x uchun yechish
x=\frac{10-y}{7}
y uchun yechish
y=10-7x
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
-\frac{2}{3} olish uchun \frac{4}{3} dan 2 ni ayirish.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Surat va maxrajini -1 ga ko‘paytiring.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
\frac{14}{3} olish uchun \frac{2}{3} va 4'ni qo'shing.
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}} natijani olish uchun -x+2 ning har bir ifodasini \frac{2}{3} ga bo‘ling.
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
-\frac{3}{2}x ni olish uchun -x ni \frac{2}{3} ga bo‘ling.
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
2 ni \frac{2}{3} ga bo'lish 2 ga k'paytirish \frac{2}{3} ga qaytarish.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}} natijani olish uchun y+4 ning har bir ifodasini \frac{14}{3} ga bo‘ling.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
4 ni \frac{14}{3} ga bo'lish 4 ga k'paytirish \frac{14}{3} ga qaytarish.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
\frac{6}{7} hosil qilish uchun 4 va \frac{3}{14} ni ko'paytirish.
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}+\frac{6}{7}-3
Ikkala tarafdan 3 ni ayirish.
-\frac{3}{2}x=\frac{y}{\frac{14}{3}}-\frac{15}{7}
-\frac{15}{7} olish uchun \frac{6}{7} dan 3 ni ayirish.
-\frac{3}{2}x=\frac{3y}{14}-\frac{15}{7}
Tenglama standart shaklda.
\frac{-\frac{3}{2}x}{-\frac{3}{2}}=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
Tenglamaning ikki tarafini -\frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{\frac{3y}{14}-\frac{15}{7}}{-\frac{3}{2}}
-\frac{3}{2} ga bo'lish -\frac{3}{2} ga ko'paytirishni bekor qiladi.
x=\frac{10-y}{7}
-\frac{15}{7}+\frac{3y}{14} ni -\frac{3}{2} ga bo'lish -\frac{15}{7}+\frac{3y}{14} ga k'paytirish -\frac{3}{2} ga qaytarish.
\frac{x-2}{-\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
-\frac{2}{3} olish uchun \frac{4}{3} dan 2 ni ayirish.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{2}{3}+4}
Surat va maxrajini -1 ga ko‘paytiring.
\frac{-x+2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
\frac{14}{3} olish uchun \frac{2}{3} va 4'ni qo'shing.
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
\frac{-x}{\frac{2}{3}}+\frac{2}{\frac{2}{3}} natijani olish uchun -x+2 ning har bir ifodasini \frac{2}{3} ga bo‘ling.
-\frac{3}{2}x+\frac{2}{\frac{2}{3}}=\frac{y+4}{\frac{14}{3}}
-\frac{3}{2}x ni olish uchun -x ni \frac{2}{3} ga bo‘ling.
-\frac{3}{2}x+2\times \frac{3}{2}=\frac{y+4}{\frac{14}{3}}
2 ni \frac{2}{3} ga bo'lish 2 ga k'paytirish \frac{2}{3} ga qaytarish.
-\frac{3}{2}x+3=\frac{y+4}{\frac{14}{3}}
3 hosil qilish uchun 2 va \frac{3}{2} ni ko'paytirish.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}}
\frac{y}{\frac{14}{3}}+\frac{4}{\frac{14}{3}} natijani olish uchun y+4 ning har bir ifodasini \frac{14}{3} ga bo‘ling.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+4\times \frac{3}{14}
4 ni \frac{14}{3} ga bo'lish 4 ga k'paytirish \frac{14}{3} ga qaytarish.
-\frac{3}{2}x+3=\frac{y}{\frac{14}{3}}+\frac{6}{7}
\frac{6}{7} hosil qilish uchun 4 va \frac{3}{14} ni ko'paytirish.
\frac{y}{\frac{14}{3}}+\frac{6}{7}=-\frac{3}{2}x+3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+3-\frac{6}{7}
Ikkala tarafdan \frac{6}{7} ni ayirish.
\frac{y}{\frac{14}{3}}=-\frac{3}{2}x+\frac{15}{7}
\frac{15}{7} olish uchun 3 dan \frac{6}{7} ni ayirish.
\frac{3}{14}y=-\frac{3x}{2}+\frac{15}{7}
Tenglama standart shaklda.
\frac{\frac{3}{14}y}{\frac{3}{14}}=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
Tenglamaning ikki tarafini \frac{3}{14} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
y=\frac{-\frac{3x}{2}+\frac{15}{7}}{\frac{3}{14}}
\frac{3}{14} ga bo'lish \frac{3}{14} ga ko'paytirishni bekor qiladi.
y=10-7x
-\frac{3x}{2}+\frac{15}{7} ni \frac{3}{14} ga bo'lish -\frac{3x}{2}+\frac{15}{7} ga k'paytirish \frac{3}{14} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}