Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
x qiymati -2,\frac{2}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3x-2\right)\left(x+2\right) ga, x+2,3x-2 ning eng kichik karralisiga ko‘paytiring.
3x^{2}-5x+2=\left(x+2\right)\times 10
3x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+2=10x+20
x+2 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-5x+2-10x=20
Ikkala tarafdan 10x ni ayirish.
3x^{2}-15x+2=20
-15x ni olish uchun -5x va -10x ni birlashtirish.
3x^{2}-15x+2-20=0
Ikkala tarafdan 20 ni ayirish.
3x^{2}-15x-18=0
-18 olish uchun 2 dan 20 ni ayirish.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-18\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -15 ni b va -18 ni c bilan almashtiring.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-18\right)}}{2\times 3}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-18\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 3}
-12 ni -18 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 3}
225 ni 216 ga qo'shish.
x=\frac{-\left(-15\right)±21}{2\times 3}
441 ning kvadrat ildizini chiqarish.
x=\frac{15±21}{2\times 3}
-15 ning teskarisi 15 ga teng.
x=\frac{15±21}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{36}{6}
x=\frac{15±21}{6} tenglamasini yeching, bunda ± musbat. 15 ni 21 ga qo'shish.
x=6
36 ni 6 ga bo'lish.
x=-\frac{6}{6}
x=\frac{15±21}{6} tenglamasini yeching, bunda ± manfiy. 15 dan 21 ni ayirish.
x=-1
-6 ni 6 ga bo'lish.
x=6 x=-1
Tenglama yechildi.
\left(3x-2\right)\left(x-1\right)=\left(x+2\right)\times 10
x qiymati -2,\frac{2}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(3x-2\right)\left(x+2\right) ga, x+2,3x-2 ning eng kichik karralisiga ko‘paytiring.
3x^{2}-5x+2=\left(x+2\right)\times 10
3x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+2=10x+20
x+2 ga 10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-5x+2-10x=20
Ikkala tarafdan 10x ni ayirish.
3x^{2}-15x+2=20
-15x ni olish uchun -5x va -10x ni birlashtirish.
3x^{2}-15x=20-2
Ikkala tarafdan 2 ni ayirish.
3x^{2}-15x=18
18 olish uchun 20 dan 2 ni ayirish.
\frac{3x^{2}-15x}{3}=\frac{18}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{18}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{18}{3}
-15 ni 3 ga bo'lish.
x^{2}-5x=6
18 ni 3 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
6 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Qisqartirish.
x=6 x=-1
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.