Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x\left(x+5\right)=0
x omili.
x=0 x=-5
Tenglamani yechish uchun x=0 va x+5=0 ni yeching.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va 0 ni c bilan almashtiring.
x=\frac{-5±5}{2}
5^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-5±5}{2} tenglamasini yeching, bunda ± musbat. -5 ni 5 ga qo'shish.
x=0
0 ni 2 ga bo'lish.
x=-\frac{10}{2}
x=\frac{-5±5}{2} tenglamasini yeching, bunda ± manfiy. -5 dan 5 ni ayirish.
x=-5
-10 ni 2 ga bo'lish.
x=0 x=-5
Tenglama yechildi.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=0 x=-5
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.