x uchun yechish
x=-5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x\left(x+5\right)=0
x omili.
x=0 x=-5
Tenglamani yechish uchun x=0 va x+5=0 ni yeching.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va 0 ni c bilan almashtiring.
x=\frac{-5±5}{2}
5^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-5±5}{2} tenglamasini yeching, bunda ± musbat. -5 ni 5 ga qo'shish.
x=0
0 ni 2 ga bo'lish.
x=-\frac{10}{2}
x=\frac{-5±5}{2} tenglamasini yeching, bunda ± manfiy. -5 dan 5 ni ayirish.
x=-5
-10 ni 2 ga bo'lish.
x=0 x=-5
Tenglama yechildi.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
Tenglamaning ikkala tarafini 6 ga, 2,3 ning eng kichik karralisiga ko‘paytiring.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
3x ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+1\right)^{2} kengaytirilishi uchun ishlating.
3x^{2}+9x-2x^{2}-4x-2+2=0
-2 ga x^{2}+2x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+9x-4x-2+2=0
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}+5x-2+2=0
5x ni olish uchun 9x va -4x ni birlashtirish.
x^{2}+5x=0
0 olish uchun -2 va 2'ni qo'shing.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=0 x=-5
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}