Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x+\left(x-3\right)x=7x-14
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x+x^{2}-3x=7x-14
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x+x^{2}=7x-14
-2x ni olish uchun x va -3x ni birlashtirish.
-2x+x^{2}-7x=-14
Ikkala tarafdan 7x ni ayirish.
-9x+x^{2}=-14
-9x ni olish uchun -2x va -7x ni birlashtirish.
-9x+x^{2}+14=0
14 ni ikki tarafga qo’shing.
x^{2}-9x+14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{25}}{2}
81 ni -56 ga qo'shish.
x=\frac{-\left(-9\right)±5}{2}
25 ning kvadrat ildizini chiqarish.
x=\frac{9±5}{2}
-9 ning teskarisi 9 ga teng.
x=\frac{14}{2}
x=\frac{9±5}{2} tenglamasini yeching, bunda ± musbat. 9 ni 5 ga qo'shish.
x=7
14 ni 2 ga bo'lish.
x=\frac{4}{2}
x=\frac{9±5}{2} tenglamasini yeching, bunda ± manfiy. 9 dan 5 ni ayirish.
x=2
4 ni 2 ga bo'lish.
x=7 x=2
Tenglama yechildi.
x+\left(x-3\right)x=7x-14
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x+x^{2}-3x=7x-14
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x+x^{2}=7x-14
-2x ni olish uchun x va -3x ni birlashtirish.
-2x+x^{2}-7x=-14
Ikkala tarafdan 7x ni ayirish.
-9x+x^{2}=-14
-9x ni olish uchun -2x va -7x ni birlashtirish.
x^{2}-9x=-14
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-14+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{25}{4}
-14 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{25}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{5}{2} x-\frac{9}{2}=-\frac{5}{2}
Qisqartirish.
x=7 x=2
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.