x uchun yechish
x=2
x=7
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { x } { x - 3 } + x = \frac { 7 x - 14 } { x - 3 }
Baham ko'rish
Klipbordga nusxa olish
x+\left(x-3\right)x=7x-14
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x+x^{2}-3x=7x-14
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x+x^{2}=7x-14
-2x ni olish uchun x va -3x ni birlashtirish.
-2x+x^{2}-7x=-14
Ikkala tarafdan 7x ni ayirish.
-9x+x^{2}=-14
-9x ni olish uchun -2x va -7x ni birlashtirish.
-9x+x^{2}+14=0
14 ni ikki tarafga qo’shing.
x^{2}-9x+14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{25}}{2}
81 ni -56 ga qo'shish.
x=\frac{-\left(-9\right)±5}{2}
25 ning kvadrat ildizini chiqarish.
x=\frac{9±5}{2}
-9 ning teskarisi 9 ga teng.
x=\frac{14}{2}
x=\frac{9±5}{2} tenglamasini yeching, bunda ± musbat. 9 ni 5 ga qo'shish.
x=7
14 ni 2 ga bo'lish.
x=\frac{4}{2}
x=\frac{9±5}{2} tenglamasini yeching, bunda ± manfiy. 9 dan 5 ni ayirish.
x=2
4 ni 2 ga bo'lish.
x=7 x=2
Tenglama yechildi.
x+\left(x-3\right)x=7x-14
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x+x^{2}-3x=7x-14
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x+x^{2}=7x-14
-2x ni olish uchun x va -3x ni birlashtirish.
-2x+x^{2}-7x=-14
Ikkala tarafdan 7x ni ayirish.
-9x+x^{2}=-14
-9x ni olish uchun -2x va -7x ni birlashtirish.
x^{2}-9x=-14
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-14+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{25}{4}
-14 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{25}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{5}{2} x-\frac{9}{2}=-\frac{5}{2}
Qisqartirish.
x=7 x=2
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}