Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=8x\left(x-1\right)+1
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-1 ga ko'paytirish.
x=8x^{2}-8x+1
8x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x-8x^{2}=-8x+1
Ikkala tarafdan 8x^{2} ni ayirish.
x-8x^{2}+8x=1
8x ni ikki tarafga qo’shing.
9x-8x^{2}=1
9x ni olish uchun x va 8x ni birlashtirish.
9x-8x^{2}-1=0
Ikkala tarafdan 1 ni ayirish.
-8x^{2}+9x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{9^{2}-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 9 ni b va -1 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81+32\left(-1\right)}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81-32}}{2\left(-8\right)}
32 ni -1 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{49}}{2\left(-8\right)}
81 ni -32 ga qo'shish.
x=\frac{-9±7}{2\left(-8\right)}
49 ning kvadrat ildizini chiqarish.
x=\frac{-9±7}{-16}
2 ni -8 marotabaga ko'paytirish.
x=-\frac{2}{-16}
x=\frac{-9±7}{-16} tenglamasini yeching, bunda ± musbat. -9 ni 7 ga qo'shish.
x=\frac{1}{8}
\frac{-2}{-16} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{16}{-16}
x=\frac{-9±7}{-16} tenglamasini yeching, bunda ± manfiy. -9 dan 7 ni ayirish.
x=1
-16 ni -16 ga bo'lish.
x=\frac{1}{8} x=1
Tenglama yechildi.
x=\frac{1}{8}
x qiymati 1 teng bo‘lmaydi.
x=8x\left(x-1\right)+1
x qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-1 ga ko'paytirish.
x=8x^{2}-8x+1
8x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x-8x^{2}=-8x+1
Ikkala tarafdan 8x^{2} ni ayirish.
x-8x^{2}+8x=1
8x ni ikki tarafga qo’shing.
9x-8x^{2}=1
9x ni olish uchun x va 8x ni birlashtirish.
-8x^{2}+9x=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8x^{2}+9x}{-8}=\frac{1}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{9}{-8}x=\frac{1}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{8}x=\frac{1}{-8}
9 ni -8 ga bo'lish.
x^{2}-\frac{9}{8}x=-\frac{1}{8}
1 ni -8 ga bo'lish.
x^{2}-\frac{9}{8}x+\left(-\frac{9}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{9}{16}\right)^{2}
-\frac{9}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{16} olish uchun. Keyin, -\frac{9}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{8}x+\frac{81}{256}=-\frac{1}{8}+\frac{81}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{16} kvadratini chiqarish.
x^{2}-\frac{9}{8}x+\frac{81}{256}=\frac{49}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{8} ni \frac{81}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{16}\right)^{2}=\frac{49}{256}
x^{2}-\frac{9}{8}x+\frac{81}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{16}\right)^{2}}=\sqrt{\frac{49}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{16}=\frac{7}{16} x-\frac{9}{16}=-\frac{7}{16}
Qisqartirish.
x=1 x=\frac{1}{8}
\frac{9}{16} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{8}
x qiymati 1 teng bo‘lmaydi.