Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{x}{\frac{xx}{x}-\frac{1}{x}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{x}{x} marotabaga ko'paytirish.
\frac{x}{\frac{xx-1}{x}}
\frac{xx}{x} va \frac{1}{x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x}{\frac{x^{2}-1}{x}}
xx-1 ichidagi ko‘paytirishlarni bajaring.
\frac{xx}{x^{2}-1}
x ni \frac{x^{2}-1}{x} ga bo'lish x ga k'paytirish \frac{x^{2}-1}{x} ga qaytarish.
\frac{x^{2}}{x^{2}-1}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
\frac{\left(x^{1}-\frac{1}{x}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-\frac{1}{x})}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{1-1}-x^{1}\left(x^{1-1}-\left(-x^{-1-1}\right)\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}-\frac{1}{x}\right)x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Qisqartirish.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-x^{1}\left(x^{0}+x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{1}-\frac{1}{x} ni x^{0} marotabaga ko'paytirish.
\frac{x^{1}x^{0}-\frac{1}{x}x^{0}-\left(x^{1}x^{0}+x^{1}x^{-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
x^{1} ni x^{0}+x^{-2} marotabaga ko'paytirish.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+x^{1-2}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{1}-\frac{1}{x}-\left(x^{1}+\frac{1}{x}\right)}{\left(x^{1}-\frac{1}{x}\right)^{2}}
Qisqartirish.
\frac{-2\times \frac{1}{x}}{\left(x^{1}-\frac{1}{x}\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-2\times \frac{1}{x}}{\left(x-\frac{1}{x}\right)^{2}}
Har qanday t sharti uchun t^{1}=t.