Baholash
\frac{x+20}{100-x^{2}}
x ga nisbatan hosilani topish
\frac{x^{2}+40x+100}{\left(100-x^{2}\right)^{2}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x}
Faktor: x^{2}-100.
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-10\right)\left(x+10\right) va 10-x ning eng kichik umumiy karralisi \left(x-10\right)\left(x+10\right). \frac{2}{10-x} ni \frac{-\left(x+10\right)}{-\left(x+10\right)} marotabaga ko'paytirish.
\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
\frac{x}{\left(x-10\right)\left(x+10\right)} va \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)}
x+2\left(-1\right)\left(x+10\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-x-20}{\left(x-10\right)\left(x+10\right)}
x-2x-20 kabi iboralarga o‘xshab birlashtiring.
\frac{-x-20}{x^{2}-100}
\left(x-10\right)\left(x+10\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x})
Faktor: x^{2}-100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-10\right)\left(x+10\right) va 10-x ning eng kichik umumiy karralisi \left(x-10\right)\left(x+10\right). \frac{2}{10-x} ni \frac{-\left(x+10\right)}{-\left(x+10\right)} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
\frac{x}{\left(x-10\right)\left(x+10\right)} va \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)})
x+2\left(-1\right)\left(x+10\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{\left(x-10\right)\left(x+10\right)})
x-2x-20 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{x^{2}-100})
Hisoblang: \left(x-10\right)\left(x+10\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 10 kvadratini chiqarish.
\frac{\left(x^{2}-100\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-20)-\left(-x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-100)}{\left(x^{2}-100\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{1-1}-\left(-x^{1}-20\right)\times 2x^{2-1}}{\left(x^{2}-100\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{0}-\left(-x^{1}-20\right)\times 2x^{1}}{\left(x^{2}-100\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{2}\left(-1\right)x^{0}-100\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{-x^{2}-100\left(-1\right)x^{0}-\left(-2x^{1+1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}\right)-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(-1-\left(-2\right)\right)x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
-1 dan -2 ni ayirish.
\frac{x^{2}+100x^{0}-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{x^{2}+100\times 1-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{x^{2}+100-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}