Baholash
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
x ga nisbatan hosilani topish
\frac{60+12x-x^{2}}{x^{4}+16x^{3}+88x^{2}+192x+144}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)}
Faktor: x^{2}+10x+24. Faktor: x^{2}+6x+8.
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x+4\right)\left(x+6\right) va \left(x+2\right)\left(x+4\right) ning eng kichik umumiy karralisi \left(x+2\right)\left(x+4\right)\left(x+6\right). \frac{x}{\left(x+4\right)\left(x+6\right)} ni \frac{x+2}{x+2} marotabaga ko'paytirish. \frac{4}{\left(x+2\right)\left(x+4\right)} ni \frac{x+6}{x+6} marotabaga ko'paytirish.
\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} va \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x\left(x+2\right)-4\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
x^{2}+2x-4x-24 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{x-6}{\left(x+2\right)\left(x+6\right)}
Surat va maxrajdagi ikkala x+4 ni qisqartiring.
\frac{x-6}{x^{2}+8x+12}
\left(x+2\right)\left(x+6\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x+4\right)\left(x+6\right)}-\frac{4}{\left(x+2\right)\left(x+4\right)})
Faktor: x^{2}+10x+24. Faktor: x^{2}+6x+8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)}-\frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x+4\right)\left(x+6\right) va \left(x+2\right)\left(x+4\right) ning eng kichik umumiy karralisi \left(x+2\right)\left(x+4\right)\left(x+6\right). \frac{x}{\left(x+4\right)\left(x+6\right)} ni \frac{x+2}{x+2} marotabaga ko'paytirish. \frac{4}{\left(x+2\right)\left(x+4\right)} ni \frac{x+6}{x+6} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)-4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} va \frac{4\left(x+6\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x-4x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x\left(x+2\right)-4\left(x+6\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
x^{2}+2x-4x-24 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-6\right)\left(x+4\right)}{\left(x+2\right)\left(x+4\right)\left(x+6\right)})
\frac{x^{2}-2x-24}{\left(x+2\right)\left(x+4\right)\left(x+6\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{\left(x+2\right)\left(x+6\right)})
Surat va maxrajdagi ikkala x+4 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-6}{x^{2}+8x+12})
x+2 ga x+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(x^{2}+8x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-6)-\left(x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1}+12)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}+8x^{1}+12\right)x^{1-1}-\left(x^{1}-6\right)\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}+8x^{1}+12\right)x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Qisqartirish.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}-6\right)\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{2}+8x^{1}+12 ni x^{0} marotabaga ko'paytirish.
\frac{x^{2}x^{0}+8x^{1}x^{0}+12x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
x^{1}-6 ni 2x^{1}+8x^{0} marotabaga ko'paytirish.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{1+1}+8x^{1}-6\times 2x^{1}-6\times 8x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{x^{2}+8x^{1}+12x^{0}-\left(2x^{2}+8x^{1}-12x^{1}-48x^{0}\right)}{\left(x^{2}+8x^{1}+12\right)^{2}}
Qisqartirish.
\frac{-x^{2}+12x^{1}+60x^{0}}{\left(x^{2}+8x^{1}+12\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-x^{2}+12x+60x^{0}}{\left(x^{2}+8x+12\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-x^{2}+12x+60\times 1}{\left(x^{2}+8x+12\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{-x^{2}+12x+60}{\left(x^{2}+8x+12\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}