\frac { x } { a } + \frac { x } { b } = \frac { d x } { - 3 } + 3
a uchun yechish
a=-\frac{3bx}{bdx+3x-9b}
\left(b\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9b}{bd+3}\text{ and }x\neq 3b\right)\text{ or }\left(b\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9b}{bd+3}\text{ and }d\neq 0\right)\text{ or }\left(x\neq 0\text{ and }b=-\frac{3}{d}\text{ and }d\neq 0\right)
b uchun yechish
b=-\frac{3ax}{adx+3x-9a}
\left(a\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9a}{ad+3}\text{ and }x\neq 3a\right)\text{ or }\left(a\neq 0\text{ and }x\neq 0\text{ and }x\neq \frac{9a}{ad+3}\text{ and }d\neq 0\right)\text{ or }\left(x\neq 0\text{ and }a=-\frac{3}{d}\text{ and }d\neq 0\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
3bx+3ax=-abdx+3ab\times 3
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3ab ga, a,b,-3 ning eng kichik karralisiga ko‘paytiring.
3bx+3ax=-abdx+9ab
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
3bx+3ax+abdx=9ab
abdx ni ikki tarafga qo’shing.
3bx+3ax+abdx-9ab=0
Ikkala tarafdan 9ab ni ayirish.
3ax+abdx-9ab=-3bx
Ikkala tarafdan 3bx ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(3x+bdx-9b\right)a=-3bx
a'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(bdx+3x-9b\right)a=-3bx
Tenglama standart shaklda.
\frac{\left(bdx+3x-9b\right)a}{bdx+3x-9b}=-\frac{3bx}{bdx+3x-9b}
Ikki tarafini 3x+bdx-9b ga bo‘ling.
a=-\frac{3bx}{bdx+3x-9b}
3x+bdx-9b ga bo'lish 3x+bdx-9b ga ko'paytirishni bekor qiladi.
a=-\frac{3bx}{bdx+3x-9b}\text{, }a\neq 0
a qiymati 0 teng bo‘lmaydi.
3bx+3ax=-abdx+3ab\times 3
b qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3ab ga, a,b,-3 ning eng kichik karralisiga ko‘paytiring.
3bx+3ax=-abdx+9ab
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
3bx+3ax+abdx=9ab
abdx ni ikki tarafga qo’shing.
3bx+3ax+abdx-9ab=0
Ikkala tarafdan 9ab ni ayirish.
3bx+abdx-9ab=-3ax
Ikkala tarafdan 3ax ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(3x+adx-9a\right)b=-3ax
b'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(adx+3x-9a\right)b=-3ax
Tenglama standart shaklda.
\frac{\left(adx+3x-9a\right)b}{adx+3x-9a}=-\frac{3ax}{adx+3x-9a}
Ikki tarafini 3x+adx-9a ga bo‘ling.
b=-\frac{3ax}{adx+3x-9a}
3x+adx-9a ga bo'lish 3x+adx-9a ga ko'paytirishni bekor qiladi.
b=-\frac{3ax}{adx+3x-9a}\text{, }b\neq 0
b qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}