Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x+7y=105
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 21 ga, 7,3 ning eng kichik karralisiga ko‘paytiring.
-x+42y=364
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 14 ga ko'paytirish.
3x+7y=105,-x+42y=364
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
3x+7y=105
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
3x=-7y+105
Tenglamaning ikkala tarafidan 7y ni ayirish.
x=\frac{1}{3}\left(-7y+105\right)
Ikki tarafini 3 ga bo‘ling.
x=-\frac{7}{3}y+35
\frac{1}{3} ni -7y+105 marotabaga ko'paytirish.
-\left(-\frac{7}{3}y+35\right)+42y=364
-\frac{7y}{3}+35 ni x uchun boshqa tenglamada almashtirish, -x+42y=364.
\frac{7}{3}y-35+42y=364
-1 ni -\frac{7y}{3}+35 marotabaga ko'paytirish.
\frac{133}{3}y-35=364
\frac{7y}{3} ni 42y ga qo'shish.
\frac{133}{3}y=399
35 ni tenglamaning ikkala tarafiga qo'shish.
y=9
Tenglamaning ikki tarafini \frac{133}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=-\frac{7}{3}\times 9+35
9 ni y uchun x=-\frac{7}{3}y+35 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-21+35
-\frac{7}{3} ni 9 marotabaga ko'paytirish.
x=14
35 ni -21 ga qo'shish.
x=14,y=9
Tizim hal qilindi.
3x+7y=105
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 21 ga, 7,3 ning eng kichik karralisiga ko‘paytiring.
-x+42y=364
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 14 ga ko'paytirish.
3x+7y=105,-x+42y=364
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}3&7\\-1&42\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}105\\364\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}3&7\\-1&42\end{matrix}\right))\left(\begin{matrix}3&7\\-1&42\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\-1&42\end{matrix}\right))\left(\begin{matrix}105\\364\end{matrix}\right)
\left(\begin{matrix}3&7\\-1&42\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\-1&42\end{matrix}\right))\left(\begin{matrix}105\\364\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\-1&42\end{matrix}\right))\left(\begin{matrix}105\\364\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{42}{3\times 42-7\left(-1\right)}&-\frac{7}{3\times 42-7\left(-1\right)}\\-\frac{-1}{3\times 42-7\left(-1\right)}&\frac{3}{3\times 42-7\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}105\\364\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{19}&-\frac{1}{19}\\\frac{1}{133}&\frac{3}{133}\end{matrix}\right)\left(\begin{matrix}105\\364\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{19}\times 105-\frac{1}{19}\times 364\\\frac{1}{133}\times 105+\frac{3}{133}\times 364\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\9\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=14,y=9
x va y matritsa elementlarini chiqarib olish.
3x+7y=105
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 21 ga, 7,3 ning eng kichik karralisiga ko‘paytiring.
-x+42y=364
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 14 ga ko'paytirish.
3x+7y=105,-x+42y=364
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-3x-7y=-105,3\left(-1\right)x+3\times 42y=3\times 364
3x va -x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -1 ga va ikkinchining har bir tarafidagi barcha shartlarni 3 ga ko'paytiring.
-3x-7y=-105,-3x+126y=1092
Qisqartirish.
-3x+3x-7y-126y=-105-1092
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -3x-7y=-105 dan -3x+126y=1092 ni ayirish.
-7y-126y=-105-1092
-3x ni 3x ga qo'shish. -3x va 3x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-133y=-105-1092
-7y ni -126y ga qo'shish.
-133y=-1197
-105 ni -1092 ga qo'shish.
y=9
Ikki tarafini -133 ga bo‘ling.
-x+42\times 9=364
9 ni y uchun -x+42y=364 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
-x+378=364
42 ni 9 marotabaga ko'paytirish.
-x=-14
Tenglamaning ikkala tarafidan 378 ni ayirish.
x=14
Ikki tarafini -1 ga bo‘ling.
x=14,y=9
Tizim hal qilindi.