x, y uchun yechish
x=15
y=12
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x=5y
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 20 ga, 5,4 ning eng kichik karralisiga ko‘paytiring.
x=\frac{1}{4}\times 5y
Ikki tarafini 4 ga bo‘ling.
x=\frac{5}{4}y
\frac{1}{4} ni 5y marotabaga ko'paytirish.
-\frac{5}{4}y+y=-3
\frac{5y}{4} ni x uchun boshqa tenglamada almashtirish, -x+y=-3.
-\frac{1}{4}y=-3
-\frac{5y}{4} ni y ga qo'shish.
y=12
Ikkala tarafini -4 ga ko‘paytiring.
x=\frac{5}{4}\times 12
12 ni y uchun x=\frac{5}{4}y da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=15
\frac{5}{4} ni 12 marotabaga ko'paytirish.
x=15,y=12
Tizim hal qilindi.
4x=5y
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 20 ga, 5,4 ning eng kichik karralisiga ko‘paytiring.
4x-5y=0
Ikkala tarafdan 5y ni ayirish.
y=x-3
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 3 ga ko'paytirish.
y-x=-3
Ikkala tarafdan x ni ayirish.
4x-5y=0,-x+y=-3
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\left(-1\right)\right)}&-\frac{-5}{4-\left(-5\left(-1\right)\right)}\\-\frac{-1}{4-\left(-5\left(-1\right)\right)}&\frac{4}{4-\left(-5\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-5\\-1&-4\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\left(-3\right)\\-4\left(-3\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\12\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=15,y=12
x va y matritsa elementlarini chiqarib olish.
4x=5y
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 20 ga, 5,4 ning eng kichik karralisiga ko‘paytiring.
4x-5y=0
Ikkala tarafdan 5y ni ayirish.
y=x-3
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 3 ga ko'paytirish.
y-x=-3
Ikkala tarafdan x ni ayirish.
4x-5y=0,-x+y=-3
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-4x-\left(-5y\right)=0,4\left(-1\right)x+4y=4\left(-3\right)
4x va -x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -1 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
-4x+5y=0,-4x+4y=-12
Qisqartirish.
-4x+4x+5y-4y=12
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -4x+5y=0 dan -4x+4y=-12 ni ayirish.
5y-4y=12
-4x ni 4x ga qo'shish. -4x va 4x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
y=12
5y ni -4y ga qo'shish.
-x+12=-3
12 ni y uchun -x+y=-3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
-x=-15
Tenglamaning ikkala tarafidan 12 ni ayirish.
x=15
Ikki tarafini -1 ga bo‘ling.
x=15,y=12
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}