s uchun yechish
s=-\frac{15\left(x-208\right)}{x^{2}}
x\neq 0
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\\x=208\text{, }&s=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{\sqrt{15\left(832s+15\right)}-15}{2s}\text{; }x=-\frac{\sqrt{15}\left(\sqrt{832s+15}+\sqrt{15}\right)}{2s}\text{, }&s\neq 0\text{ and }s\geq -\frac{15}{832}\\x=208\text{, }&s=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x\times 3+3x\times 4+2xxs+12\left(\frac{x}{4}-8\right)\times 2=6048
Tenglamaning ikkala tarafini 12 ga, 3,4,6 ning eng kichik karralisiga ko‘paytiring.
4x\times 3+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
x^{2} hosil qilish uchun x va x ni ko'paytirish.
12x+3x\times 4+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
12 hosil qilish uchun 4 va 3 ni ko'paytirish.
12x+12x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24x+2x^{2}s+12\left(\frac{x}{4}-8\right)\times 2=6048
24x ni olish uchun 12x va 12x ni birlashtirish.
24x+2x^{2}s+24\left(\frac{x}{4}-8\right)=6048
24 hosil qilish uchun 12 va 2 ni ko'paytirish.
24x+2x^{2}s+24\times \frac{x}{4}-192=6048
24 ga \frac{x}{4}-8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
24x+2x^{2}s+6x-192=6048
24 va 4 ichida eng katta umumiy 4 faktorini bekor qiling.
30x+2x^{2}s-192=6048
30x ni olish uchun 24x va 6x ni birlashtirish.
2x^{2}s-192=6048-30x
Ikkala tarafdan 30x ni ayirish.
2x^{2}s=6048-30x+192
192 ni ikki tarafga qo’shing.
2x^{2}s=6240-30x
6240 olish uchun 6048 va 192'ni qo'shing.
\frac{2x^{2}s}{2x^{2}}=\frac{6240-30x}{2x^{2}}
Ikki tarafini 2x^{2} ga bo‘ling.
s=\frac{6240-30x}{2x^{2}}
2x^{2} ga bo'lish 2x^{2} ga ko'paytirishni bekor qiladi.
s=\frac{15\left(208-x\right)}{x^{2}}
6240-30x ni 2x^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}