x, y uchun yechish
x=6
y=8
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x+3y=48
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 12 ga, 3,4 ning eng kichik karralisiga ko‘paytiring.
2x-y=4
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
4x+3y=48,2x-y=4
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
4x+3y=48
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
4x=-3y+48
Tenglamaning ikkala tarafidan 3y ni ayirish.
x=\frac{1}{4}\left(-3y+48\right)
Ikki tarafini 4 ga bo‘ling.
x=-\frac{3}{4}y+12
\frac{1}{4} ni -3y+48 marotabaga ko'paytirish.
2\left(-\frac{3}{4}y+12\right)-y=4
-\frac{3y}{4}+12 ni x uchun boshqa tenglamada almashtirish, 2x-y=4.
-\frac{3}{2}y+24-y=4
2 ni -\frac{3y}{4}+12 marotabaga ko'paytirish.
-\frac{5}{2}y+24=4
-\frac{3y}{2} ni -y ga qo'shish.
-\frac{5}{2}y=-20
Tenglamaning ikkala tarafidan 24 ni ayirish.
y=8
Tenglamaning ikki tarafini -\frac{5}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=-\frac{3}{4}\times 8+12
8 ni y uchun x=-\frac{3}{4}y+12 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=-6+12
-\frac{3}{4} ni 8 marotabaga ko'paytirish.
x=6
12 ni -6 ga qo'shish.
x=6,y=8
Tizim hal qilindi.
4x+3y=48
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 12 ga, 3,4 ning eng kichik karralisiga ko‘paytiring.
2x-y=4
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
4x+3y=48,2x-y=4
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}48\\4\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}4&3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
\left(\begin{matrix}4&3\\2&-1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\2&-1\end{matrix}\right))\left(\begin{matrix}48\\4\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-3\times 2}&-\frac{3}{4\left(-1\right)-3\times 2}\\-\frac{2}{4\left(-1\right)-3\times 2}&\frac{4}{4\left(-1\right)-3\times 2}\end{matrix}\right)\left(\begin{matrix}48\\4\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{3}{10}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}48\\4\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 48+\frac{3}{10}\times 4\\\frac{1}{5}\times 48-\frac{2}{5}\times 4\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=6,y=8
x va y matritsa elementlarini chiqarib olish.
4x+3y=48
Birinchi tenglamani yeching. Tenglamaning ikkala tarafini 12 ga, 3,4 ning eng kichik karralisiga ko‘paytiring.
2x-y=4
Ikkinchi tenglamani yeching. Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
4x+3y=48,2x-y=4
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
2\times 4x+2\times 3y=2\times 48,4\times 2x+4\left(-1\right)y=4\times 4
4x va 2x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 2 ga va ikkinchining har bir tarafidagi barcha shartlarni 4 ga ko'paytiring.
8x+6y=96,8x-4y=16
Qisqartirish.
8x-8x+6y+4y=96-16
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 8x+6y=96 dan 8x-4y=16 ni ayirish.
6y+4y=96-16
8x ni -8x ga qo'shish. 8x va -8x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
10y=96-16
6y ni 4y ga qo'shish.
10y=80
96 ni -16 ga qo'shish.
y=8
Ikki tarafini 10 ga bo‘ling.
2x-8=4
8 ni y uchun 2x-y=4 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
2x=12
8 ni tenglamaning ikkala tarafiga qo'shish.
x=6
Ikki tarafini 2 ga bo‘ling.
x=6,y=8
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}