x uchun yechish
x=\frac{\sqrt{65}}{20}-\frac{1}{4}\approx 0,153112887
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}\approx -0,653112887
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(2x-1\right)\left(2x+1\right) ga, 2x+1,1-2x ning eng kichik karralisiga ko‘paytiring.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
2x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
-1-2x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
-5x ni olish uchun -x va -4x ni birlashtirish.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-5x-2=12x^{2}-3
6x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-2-12x^{2}=-3
Ikkala tarafdan 12x^{2} ni ayirish.
-10x^{2}-5x-2=-3
-10x^{2} ni olish uchun 2x^{2} va -12x^{2} ni birlashtirish.
-10x^{2}-5x-2+3=0
3 ni ikki tarafga qo’shing.
-10x^{2}-5x+1=0
1 olish uchun -2 va 3'ni qo'shing.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-10\right)}}{2\left(-10\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -10 ni a, -5 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-10\right)}}{2\left(-10\right)}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+40}}{2\left(-10\right)}
-4 ni -10 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{65}}{2\left(-10\right)}
25 ni 40 ga qo'shish.
x=\frac{5±\sqrt{65}}{2\left(-10\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{65}}{-20}
2 ni -10 marotabaga ko'paytirish.
x=\frac{\sqrt{65}+5}{-20}
x=\frac{5±\sqrt{65}}{-20} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{65} ga qo'shish.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
5+\sqrt{65} ni -20 ga bo'lish.
x=\frac{5-\sqrt{65}}{-20}
x=\frac{5±\sqrt{65}}{-20} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{65} ni ayirish.
x=\frac{\sqrt{65}}{20}-\frac{1}{4}
5-\sqrt{65} ni -20 ga bo'lish.
x=-\frac{\sqrt{65}}{20}-\frac{1}{4} x=\frac{\sqrt{65}}{20}-\frac{1}{4}
Tenglama yechildi.
\left(2x-1\right)x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(2x-1\right)\left(2x+1\right) ga, 2x+1,1-2x ning eng kichik karralisiga ko‘paytiring.
2x^{2}-x+\left(-1-2x\right)\times 2=3\left(2x-1\right)\left(2x+1\right)
2x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-x-2-4x=3\left(2x-1\right)\left(2x+1\right)
-1-2x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-5x-2=3\left(2x-1\right)\left(2x+1\right)
-5x ni olish uchun -x va -4x ni birlashtirish.
2x^{2}-5x-2=\left(6x-3\right)\left(2x+1\right)
3 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-5x-2=12x^{2}-3
6x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-2-12x^{2}=-3
Ikkala tarafdan 12x^{2} ni ayirish.
-10x^{2}-5x-2=-3
-10x^{2} ni olish uchun 2x^{2} va -12x^{2} ni birlashtirish.
-10x^{2}-5x=-3+2
2 ni ikki tarafga qo’shing.
-10x^{2}-5x=-1
-1 olish uchun -3 va 2'ni qo'shing.
\frac{-10x^{2}-5x}{-10}=-\frac{1}{-10}
Ikki tarafini -10 ga bo‘ling.
x^{2}+\left(-\frac{5}{-10}\right)x=-\frac{1}{-10}
-10 ga bo'lish -10 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=-\frac{1}{-10}
\frac{-5}{-10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{2}x=\frac{1}{10}
-1 ni -10 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{10}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{10}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{80}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{10} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{4}\right)^{2}=\frac{13}{80}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{80}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{\sqrt{65}}{20} x+\frac{1}{4}=-\frac{\sqrt{65}}{20}
Qisqartirish.
x=\frac{\sqrt{65}}{20}-\frac{1}{4} x=-\frac{\sqrt{65}}{20}-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}