k uchun yechish (complex solution)
k=\frac{2}{3}-\frac{4}{3x}
x\neq \frac{4}{5}\text{ and }x\neq 0\text{ and }x\neq -4\text{ and }x\neq -1
x uchun yechish (complex solution)
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
k uchun yechish
k=\frac{2}{3}-\frac{4}{3x}
x\neq -4\text{ and }x\neq 0\text{ and }x\neq \frac{4}{5}\text{ and }x\neq -1
x uchun yechish
x=\frac{4}{2-3k}
k\neq \frac{2}{3}\text{ and }k\neq 2\text{ and }|k|\neq 1
Baham ko'rish
Klipbordga nusxa olish
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
k qiymati -1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(k-2\right)\left(k-1\right)\left(k+1\right) ga, 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2 ning eng kichik karralisiga ko‘paytiring.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
k-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kx-2x+2k-4xk-2+4x=2k+2
2k-2 ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3kx-2x+2k-2+4x=2k+2
-3kx ni olish uchun kx va -4xk ni birlashtirish.
-3kx+2x+2k-2=2k+2
2x ni olish uchun -2x va 4x ni birlashtirish.
-3kx+2x+2k-2-2k=2
Ikkala tarafdan 2k ni ayirish.
-3kx+2x-2=2
0 ni olish uchun 2k va -2k ni birlashtirish.
-3kx-2=2-2x
Ikkala tarafdan 2x ni ayirish.
-3kx=2-2x+2
2 ni ikki tarafga qo’shing.
-3kx=4-2x
4 olish uchun 2 va 2'ni qo'shing.
\left(-3x\right)k=4-2x
Tenglama standart shaklda.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Ikki tarafini -3x ga bo‘ling.
k=\frac{4-2x}{-3x}
-3x ga bo'lish -3x ga ko'paytirishni bekor qiladi.
k=\frac{2}{3}-\frac{4}{3x}
4-2x ni -3x ga bo'lish.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
k qiymati -1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Tenglamaning ikkala tarafini 2\left(k-2\right)\left(k-1\right)\left(k+1\right) ga, 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2 ning eng kichik karralisiga ko‘paytiring.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
k-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kx-2x+2k-4kx-2+4x=2k+2
2k-2 ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3kx-2x+2k-2+4x=2k+2
-3kx ni olish uchun kx va -4kx ni birlashtirish.
-3kx+2x+2k-2=2k+2
2x ni olish uchun -2x va 4x ni birlashtirish.
-3kx+2x-2=2k+2-2k
Ikkala tarafdan 2k ni ayirish.
-3kx+2x-2=2
0 ni olish uchun 2k va -2k ni birlashtirish.
-3kx+2x=2+2
2 ni ikki tarafga qo’shing.
-3kx+2x=4
4 olish uchun 2 va 2'ni qo'shing.
\left(-3k+2\right)x=4
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(2-3k\right)x=4
Tenglama standart shaklda.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Ikki tarafini 2-3k ga bo‘ling.
x=\frac{4}{2-3k}
2-3k ga bo'lish 2-3k ga ko'paytirishni bekor qiladi.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
k qiymati -1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(k-2\right)\left(k-1\right)\left(k+1\right) ga, 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2 ning eng kichik karralisiga ko‘paytiring.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
k-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kx-2x+2k-4xk-2+4x=2k+2
2k-2 ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3kx-2x+2k-2+4x=2k+2
-3kx ni olish uchun kx va -4xk ni birlashtirish.
-3kx+2x+2k-2=2k+2
2x ni olish uchun -2x va 4x ni birlashtirish.
-3kx+2x+2k-2-2k=2
Ikkala tarafdan 2k ni ayirish.
-3kx+2x-2=2
0 ni olish uchun 2k va -2k ni birlashtirish.
-3kx-2=2-2x
Ikkala tarafdan 2x ni ayirish.
-3kx=2-2x+2
2 ni ikki tarafga qo’shing.
-3kx=4-2x
4 olish uchun 2 va 2'ni qo'shing.
\left(-3x\right)k=4-2x
Tenglama standart shaklda.
\frac{\left(-3x\right)k}{-3x}=\frac{4-2x}{-3x}
Ikki tarafini -3x ga bo‘ling.
k=\frac{4-2x}{-3x}
-3x ga bo'lish -3x ga ko'paytirishni bekor qiladi.
k=\frac{2}{3}-\frac{4}{3x}
4-2x ni -3x ga bo'lish.
k=\frac{2}{3}-\frac{4}{3x}\text{, }k\neq -1\text{ and }k\neq 1\text{ and }k\neq 2
k qiymati -1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi.
\left(k-2\right)x+\left(2k-2\right)\left(1-2x\right)=2k+2
Tenglamaning ikkala tarafini 2\left(k-2\right)\left(k-1\right)\left(k+1\right) ga, 2k^{2}-2,k^{2}-k-2,k^{2}-3k+2 ning eng kichik karralisiga ko‘paytiring.
kx-2x+\left(2k-2\right)\left(1-2x\right)=2k+2
k-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
kx-2x+2k-4kx-2+4x=2k+2
2k-2 ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3kx-2x+2k-2+4x=2k+2
-3kx ni olish uchun kx va -4kx ni birlashtirish.
-3kx+2x+2k-2=2k+2
2x ni olish uchun -2x va 4x ni birlashtirish.
-3kx+2x-2=2k+2-2k
Ikkala tarafdan 2k ni ayirish.
-3kx+2x-2=2
0 ni olish uchun 2k va -2k ni birlashtirish.
-3kx+2x=2+2
2 ni ikki tarafga qo’shing.
-3kx+2x=4
4 olish uchun 2 va 2'ni qo'shing.
\left(-3k+2\right)x=4
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(2-3k\right)x=4
Tenglama standart shaklda.
\frac{\left(2-3k\right)x}{2-3k}=\frac{4}{2-3k}
Ikki tarafini 2-3k ga bo‘ling.
x=\frac{4}{2-3k}
2-3k ga bo'lish 2-3k ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}