x uchun yechish
x=-1
x=6
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { x } { 2 } - \frac { 3 } { x } = \frac { 5 } { 2 }
Baham ko'rish
Klipbordga nusxa olish
xx-2\times 3=5x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2\times 3=5x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-6=5x
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
x^{2}-6-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-5x-6=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-5 ab=-6
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-5x-6 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-6 2,-3
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-6=-5 2-3=-1
Har bir juftlik yigʻindisini hisoblang.
a=-6 b=1
Yechim – -5 yigʻindisini beruvchi juftlik.
\left(x-6\right)\left(x+1\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=6 x=-1
Tenglamani yechish uchun x-6=0 va x+1=0 ni yeching.
xx-2\times 3=5x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2\times 3=5x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-6=5x
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
x^{2}-6-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-5x-6=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-5 ab=1\left(-6\right)=-6
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-6 2,-3
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-6=-5 2-3=-1
Har bir juftlik yigʻindisini hisoblang.
a=-6 b=1
Yechim – -5 yigʻindisini beruvchi juftlik.
\left(x^{2}-6x\right)+\left(x-6\right)
x^{2}-5x-6 ni \left(x^{2}-6x\right)+\left(x-6\right) sifatida qaytadan yozish.
x\left(x-6\right)+x-6
x^{2}-6x ichida x ni ajrating.
\left(x-6\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda x-6 umumiy terminini chiqaring.
x=6 x=-1
Tenglamani yechish uchun x-6=0 va x+1=0 ni yeching.
xx-2\times 3=5x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2\times 3=5x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-6=5x
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
x^{2}-6-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-5x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
25 ni 24 ga qo'shish.
x=\frac{-\left(-5\right)±7}{2}
49 ning kvadrat ildizini chiqarish.
x=\frac{5±7}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{12}{2}
x=\frac{5±7}{2} tenglamasini yeching, bunda ± musbat. 5 ni 7 ga qo'shish.
x=6
12 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{5±7}{2} tenglamasini yeching, bunda ± manfiy. 5 dan 7 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=6 x=-1
Tenglama yechildi.
xx-2\times 3=5x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga, 2,x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2\times 3=5x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}-6=5x
-6 hosil qilish uchun -2 va 3 ni ko'paytirish.
x^{2}-6-5x=0
Ikkala tarafdan 5x ni ayirish.
x^{2}-5x=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
6 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
Qisqartirish.
x=6 x=-1
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}