x uchun yechish
x=\frac{2}{3}\approx 0,666666667
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+2\right) ga, 2+x,2-x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
\left(2+x\right)\times \frac{x}{2} ni yagona kasrga aylantiring.
x^{2}-2x=-\frac{2x+x^{2}}{2}
2+x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
x+\frac{1}{2}x^{2} natijani olish uchun 2x+x^{2} ning har bir ifodasini 2 ga bo‘ling.
x^{2}-2x=-x-\frac{1}{2}x^{2}
x+\frac{1}{2}x^{2} teskarisini topish uchun har birining teskarisini toping.
x^{2}-2x+x=-\frac{1}{2}x^{2}
x ni ikki tarafga qo’shing.
x^{2}-x=-\frac{1}{2}x^{2}
-x ni olish uchun -2x va x ni birlashtirish.
x^{2}-x+\frac{1}{2}x^{2}=0
\frac{1}{2}x^{2} ni ikki tarafga qo’shing.
\frac{3}{2}x^{2}-x=0
\frac{3}{2}x^{2} ni olish uchun x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
x\left(\frac{3}{2}x-1\right)=0
x omili.
x=0 x=\frac{2}{3}
Tenglamani yechish uchun x=0 va \frac{3x}{2}-1=0 ni yeching.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+2\right) ga, 2+x,2-x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
\left(2+x\right)\times \frac{x}{2} ni yagona kasrga aylantiring.
x^{2}-2x=-\frac{2x+x^{2}}{2}
2+x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
x+\frac{1}{2}x^{2} natijani olish uchun 2x+x^{2} ning har bir ifodasini 2 ga bo‘ling.
x^{2}-2x=-x-\frac{1}{2}x^{2}
x+\frac{1}{2}x^{2} teskarisini topish uchun har birining teskarisini toping.
x^{2}-2x+x=-\frac{1}{2}x^{2}
x ni ikki tarafga qo’shing.
x^{2}-x=-\frac{1}{2}x^{2}
-x ni olish uchun -2x va x ni birlashtirish.
x^{2}-x+\frac{1}{2}x^{2}=0
\frac{1}{2}x^{2} ni ikki tarafga qo’shing.
\frac{3}{2}x^{2}-x=0
\frac{3}{2}x^{2} ni olish uchun x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times \frac{3}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{3}{2} ni a, -1 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±1}{2\times \frac{3}{2}}
1 ning kvadrat ildizini chiqarish.
x=\frac{1±1}{2\times \frac{3}{2}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±1}{3}
2 ni \frac{3}{2} marotabaga ko'paytirish.
x=\frac{2}{3}
x=\frac{1±1}{3} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
x=\frac{0}{3}
x=\frac{1±1}{3} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
x=0
0 ni 3 ga bo'lish.
x=\frac{2}{3} x=0
Tenglama yechildi.
\left(x-2\right)x=-\left(2+x\right)\times \frac{x}{2}
x qiymati -2,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+2\right) ga, 2+x,2-x ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x=-\left(2+x\right)\times \frac{x}{2}
x-2 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\frac{\left(2+x\right)x}{2}
\left(2+x\right)\times \frac{x}{2} ni yagona kasrga aylantiring.
x^{2}-2x=-\frac{2x+x^{2}}{2}
2+x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-2x=-\left(x+\frac{1}{2}x^{2}\right)
x+\frac{1}{2}x^{2} natijani olish uchun 2x+x^{2} ning har bir ifodasini 2 ga bo‘ling.
x^{2}-2x=-x-\frac{1}{2}x^{2}
x+\frac{1}{2}x^{2} teskarisini topish uchun har birining teskarisini toping.
x^{2}-2x+x=-\frac{1}{2}x^{2}
x ni ikki tarafga qo’shing.
x^{2}-x=-\frac{1}{2}x^{2}
-x ni olish uchun -2x va x ni birlashtirish.
x^{2}-x+\frac{1}{2}x^{2}=0
\frac{1}{2}x^{2} ni ikki tarafga qo’shing.
\frac{3}{2}x^{2}-x=0
\frac{3}{2}x^{2} ni olish uchun x^{2} va \frac{1}{2}x^{2} ni birlashtirish.
\frac{\frac{3}{2}x^{2}-x}{\frac{3}{2}}=\frac{0}{\frac{3}{2}}
Tenglamaning ikki tarafini \frac{3}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\left(-\frac{1}{\frac{3}{2}}\right)x=\frac{0}{\frac{3}{2}}
\frac{3}{2} ga bo'lish \frac{3}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{3}x=\frac{0}{\frac{3}{2}}
-1 ni \frac{3}{2} ga bo'lish -1 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x=0
0 ni \frac{3}{2} ga bo'lish 0 ga k'paytirish \frac{3}{2} ga qaytarish.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
\left(x-\frac{1}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{3}=\frac{1}{3} x-\frac{1}{3}=-\frac{1}{3}
Qisqartirish.
x=\frac{2}{3} x=0
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}