Baholash
\frac{1}{x+3}
Kengaytirish
\frac{1}{x+3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Faktor: x^{3}-9x. Faktor: x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-3\right)\left(x+3\right) va \left(x-3\right)\left(x+3\right) ning eng kichik umumiy karralisi x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} va \frac{x}{x\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+x kabi iboralarga o‘xshab birlashtiring.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-3\right)\left(x+3\right) va x-3 ning eng kichik umumiy karralisi x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} ni \frac{x\left(x+3\right)}{x\left(x+3\right)} marotabaga ko'paytirish.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} va \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3x kabi iboralarga o‘xshab birlashtiring.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x mislodagi manfiy ishorani chiqarib tashlang.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Surat va maxrajdagi ikkala x-3 ni qisqartiring.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x+3\right) va x ning eng kichik umumiy karralisi x\left(x+3\right). \frac{1}{x} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{-3+x+3}{x\left(x+3\right)}
\frac{-3}{x\left(x+3\right)} va \frac{x+3}{x\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x}{x\left(x+3\right)}
-3+x+3 kabi iboralarga o‘xshab birlashtiring.
\frac{1}{x+3}
Surat va maxrajdagi ikkala x ni qisqartiring.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Faktor: x^{3}-9x. Faktor: x^{2}-9.
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)}+\frac{x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-3\right)\left(x+3\right) va \left(x-3\right)\left(x+3\right) ning eng kichik umumiy karralisi x\left(x-3\right)\left(x+3\right). \frac{1}{\left(x-3\right)\left(x+3\right)} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{x^{2}-x+9+x}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
\frac{x^{2}-x+9}{x\left(x-3\right)\left(x+3\right)} va \frac{x}{x\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{1}{x-3}+\frac{1}{x}
x^{2}-x+9+x kabi iboralarga o‘xshab birlashtiring.
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x-3\right)\left(x+3\right) va x-3 ning eng kichik umumiy karralisi x\left(x-3\right)\left(x+3\right). \frac{1}{x-3} ni \frac{x\left(x+3\right)}{x\left(x+3\right)} marotabaga ko'paytirish.
\frac{x^{2}+9-x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{x^{2}+9}{x\left(x-3\right)\left(x+3\right)} va \frac{x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}+9-x^{2}-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x\left(x+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
x^{2}+9-x^{2}-3x kabi iboralarga o‘xshab birlashtiring.
\frac{3\left(-x+3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
\frac{9-3x}{x\left(x-3\right)\left(x+3\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{-3\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x}
3-x mislodagi manfiy ishorani chiqarib tashlang.
\frac{-3}{x\left(x+3\right)}+\frac{1}{x}
Surat va maxrajdagi ikkala x-3 ni qisqartiring.
\frac{-3}{x\left(x+3\right)}+\frac{x+3}{x\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x\left(x+3\right) va x ning eng kichik umumiy karralisi x\left(x+3\right). \frac{1}{x} ni \frac{x+3}{x+3} marotabaga ko'paytirish.
\frac{-3+x+3}{x\left(x+3\right)}
\frac{-3}{x\left(x+3\right)} va \frac{x+3}{x\left(x+3\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{x}{x\left(x+3\right)}
-3+x+3 kabi iboralarga o‘xshab birlashtiring.
\frac{1}{x+3}
Surat va maxrajdagi ikkala x ni qisqartiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}