x uchun yechish
x=-\frac{2}{3}\approx -0,666666667
x=-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)\left(x+2\right)
x qiymati -2,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+2\right) ga, x^{2}+x-2,x^{2}-4,x^{2}-3x+2 ning eng kichik karralisiga ko‘paytiring.
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
\left(x+2\right)^{2} hosil qilish uchun x+2 va x+2 ni ko'paytirish.
x^{3}-2x-2x^{2}+4+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x^{2}-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-2x-2x^{2}+4+3x^{2}-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-1 ga 3x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-2x+x^{2}+4-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x^{2} ni olish uchun -2x^{2} va 3x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+4-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
-3x ni olish uchun -2x va -x ni birlashtirish.
x^{3}-3x+x^{2}+2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
2 olish uchun 4 dan 2 ni ayirish.
x^{3}-3x+x^{2}+2=\left(x^{2}-3x+2\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x+2\right)^{2}
x^{2}-3x+2 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x^{2}+4x+4\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-x^{2}-4x-4
x^{2}+4x+4 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-4x+4-4x-4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x+4-4
-8x ni olish uchun -4x va -4x ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x
0 olish uchun 4 dan 4 ni ayirish.
x^{3}-3x+x^{2}+2-x^{3}=-2x^{2}-8x
Ikkala tarafdan x^{3} ni ayirish.
-3x+x^{2}+2=-2x^{2}-8x
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x+x^{2}+2+2x^{2}=-8x
2x^{2} ni ikki tarafga qo’shing.
-3x+3x^{2}+2=-8x
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
-3x+3x^{2}+2+8x=0
8x ni ikki tarafga qo’shing.
5x+3x^{2}+2=0
5x ni olish uchun -3x va 8x ni birlashtirish.
3x^{2}+5x+2=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=5 ab=3\times 2=6
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3x^{2}+ax+bx+2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,6 2,3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+6=7 2+3=5
Har bir juftlik yigʻindisini hisoblang.
a=2 b=3
Yechim – 5 yigʻindisini beruvchi juftlik.
\left(3x^{2}+2x\right)+\left(3x+2\right)
3x^{2}+5x+2 ni \left(3x^{2}+2x\right)+\left(3x+2\right) sifatida qaytadan yozish.
x\left(3x+2\right)+3x+2
3x^{2}+2x ichida x ni ajrating.
\left(3x+2\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda 3x+2 umumiy terminini chiqaring.
x=-\frac{2}{3} x=-1
Tenglamani yechish uchun 3x+2=0 va x+1=0 ni yeching.
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)\left(x+2\right)
x qiymati -2,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+2\right) ga, x^{2}+x-2,x^{2}-4,x^{2}-3x+2 ning eng kichik karralisiga ko‘paytiring.
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
\left(x+2\right)^{2} hosil qilish uchun x+2 va x+2 ni ko'paytirish.
x^{3}-2x-2x^{2}+4+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x^{2}-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-2x-2x^{2}+4+3x^{2}-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-1 ga 3x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-2x+x^{2}+4-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x^{2} ni olish uchun -2x^{2} va 3x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+4-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
-3x ni olish uchun -2x va -x ni birlashtirish.
x^{3}-3x+x^{2}+2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
2 olish uchun 4 dan 2 ni ayirish.
x^{3}-3x+x^{2}+2=\left(x^{2}-3x+2\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x+2\right)^{2}
x^{2}-3x+2 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x^{2}+4x+4\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-x^{2}-4x-4
x^{2}+4x+4 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-4x+4-4x-4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x+4-4
-8x ni olish uchun -4x va -4x ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x
0 olish uchun 4 dan 4 ni ayirish.
x^{3}-3x+x^{2}+2-x^{3}=-2x^{2}-8x
Ikkala tarafdan x^{3} ni ayirish.
-3x+x^{2}+2=-2x^{2}-8x
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x+x^{2}+2+2x^{2}=-8x
2x^{2} ni ikki tarafga qo’shing.
-3x+3x^{2}+2=-8x
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
-3x+3x^{2}+2+8x=0
8x ni ikki tarafga qo’shing.
5x+3x^{2}+2=0
5x ni olish uchun -3x va 8x ni birlashtirish.
3x^{2}+5x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 5 ni b va 2 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 3\times 2}}{2\times 3}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{1}}{2\times 3}
25 ni -24 ga qo'shish.
x=\frac{-5±1}{2\times 3}
1 ning kvadrat ildizini chiqarish.
x=\frac{-5±1}{6}
2 ni 3 marotabaga ko'paytirish.
x=-\frac{4}{6}
x=\frac{-5±1}{6} tenglamasini yeching, bunda ± musbat. -5 ni 1 ga qo'shish.
x=-\frac{2}{3}
\frac{-4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{6}{6}
x=\frac{-5±1}{6} tenglamasini yeching, bunda ± manfiy. -5 dan 1 ni ayirish.
x=-1
-6 ni 6 ga bo'lish.
x=-\frac{2}{3} x=-1
Tenglama yechildi.
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)\left(x+2\right)
x qiymati -2,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+2\right) ga, x^{2}+x-2,x^{2}-4,x^{2}-3x+2 ning eng kichik karralisiga ko‘paytiring.
\left(x-2\right)\left(x^{2}-2\right)+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
\left(x+2\right)^{2} hosil qilish uchun x+2 va x+2 ni ko'paytirish.
x^{3}-2x-2x^{2}+4+\left(x-1\right)\left(3x+2\right)=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x^{2}-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{3}-2x-2x^{2}+4+3x^{2}-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x-1 ga 3x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-2x+x^{2}+4-x-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
x^{2} ni olish uchun -2x^{2} va 3x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+4-2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
-3x ni olish uchun -2x va -x ni birlashtirish.
x^{3}-3x+x^{2}+2=\left(x-2\right)\left(x-1\right)\left(x+2\right)-\left(x+2\right)^{2}
2 olish uchun 4 dan 2 ni ayirish.
x^{3}-3x+x^{2}+2=\left(x^{2}-3x+2\right)\left(x+2\right)-\left(x+2\right)^{2}
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x+2\right)^{2}
x^{2}-3x+2 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-\left(x^{2}+4x+4\right)
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+2\right)^{2} kengaytirilishi uchun ishlating.
x^{3}-3x+x^{2}+2=x^{3}-x^{2}-4x+4-x^{2}-4x-4
x^{2}+4x+4 teskarisini topish uchun har birining teskarisini toping.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-4x+4-4x-4
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x+4-4
-8x ni olish uchun -4x va -4x ni birlashtirish.
x^{3}-3x+x^{2}+2=x^{3}-2x^{2}-8x
0 olish uchun 4 dan 4 ni ayirish.
x^{3}-3x+x^{2}+2-x^{3}=-2x^{2}-8x
Ikkala tarafdan x^{3} ni ayirish.
-3x+x^{2}+2=-2x^{2}-8x
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
-3x+x^{2}+2+2x^{2}=-8x
2x^{2} ni ikki tarafga qo’shing.
-3x+3x^{2}+2=-8x
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
-3x+3x^{2}+2+8x=0
8x ni ikki tarafga qo’shing.
5x+3x^{2}+2=0
5x ni olish uchun -3x va 8x ni birlashtirish.
5x+3x^{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
3x^{2}+5x=-2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{3x^{2}+5x}{3}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{5}{3}x=-\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{6} olish uchun. Keyin, \frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{3}x+\frac{25}{36}=-\frac{2}{3}+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{6} kvadratini chiqarish.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{1}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{25}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{6}\right)^{2}=\frac{1}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{6}=\frac{1}{6} x+\frac{5}{6}=-\frac{1}{6}
Qisqartirish.
x=-\frac{2}{3} x=-1
Tenglamaning ikkala tarafidan \frac{5}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}