Baholash
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Omil
\frac{3xy}{2\left(x^{2}-y^{2}\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x}{x+y}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Faktor: x^{2}-y^{2}.
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)}-\frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x+y\right)\left(x-y\right) va x+y ning eng kichik umumiy karralisi \left(x+y\right)\left(x-y\right). \frac{x}{x+y} ni \frac{x-y}{x-y} marotabaga ko'paytirish.
\frac{x^{2}-x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
\frac{x^{2}}{\left(x+y\right)\left(x-y\right)} va \frac{x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x^{2}-x^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
x^{2}-x\left(x-y\right) ichidagi ko‘paytirishlarni bajaring.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2x-2y}-\frac{y^{2}}{2x^{2}-2y^{2}}
x^{2}-x^{2}+xy kabi iboralarga o‘xshab birlashtiring.
\frac{xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{2\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Faktor: 2x-2y.
\frac{2xy}{2\left(x+y\right)\left(x-y\right)}+\frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x+y\right)\left(x-y\right) va 2\left(x-y\right) ning eng kichik umumiy karralisi 2\left(x+y\right)\left(x-y\right). \frac{xy}{\left(x+y\right)\left(x-y\right)} ni \frac{2}{2} marotabaga ko'paytirish. \frac{y}{2\left(x-y\right)} ni \frac{x+y}{x+y} marotabaga ko'paytirish.
\frac{2xy+y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
\frac{2xy}{2\left(x+y\right)\left(x-y\right)} va \frac{y\left(x+y\right)}{2\left(x+y\right)\left(x-y\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2xy+xy+y^{2}}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
2xy+y\left(x+y\right) ichidagi ko‘paytirishlarni bajaring.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2x^{2}-2y^{2}}
2xy+xy+y^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)}-\frac{y^{2}}{2\left(x+y\right)\left(x-y\right)}
Faktor: 2x^{2}-2y^{2}.
\frac{y^{2}+3xy-y^{2}}{2\left(x+y\right)\left(x-y\right)}
\frac{y^{2}+3xy}{2\left(x+y\right)\left(x-y\right)} va \frac{y^{2}}{2\left(x+y\right)\left(x-y\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3xy}{2\left(x+y\right)\left(x-y\right)}
y^{2}+3xy-y^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{3xy}{2x^{2}-2y^{2}}
2\left(x+y\right)\left(x-y\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}