x uchun yechish (complex solution)
x=2+4i
x=2-4i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{4}x^{2}-x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{4}\times 5}}{2\times \frac{1}{4}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{4} ni a, -1 ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-5}}{2\times \frac{1}{4}}
-4 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-4}}{2\times \frac{1}{4}}
1 ni -5 ga qo'shish.
x=\frac{-\left(-1\right)±2i}{2\times \frac{1}{4}}
-4 ning kvadrat ildizini chiqarish.
x=\frac{1±2i}{2\times \frac{1}{4}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±2i}{\frac{1}{2}}
2 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{1+2i}{\frac{1}{2}}
x=\frac{1±2i}{\frac{1}{2}} tenglamasini yeching, bunda ± musbat. 1 ni 2i ga qo'shish.
x=2+4i
1+2i ni \frac{1}{2} ga bo'lish 1+2i ga k'paytirish \frac{1}{2} ga qaytarish.
x=\frac{1-2i}{\frac{1}{2}}
x=\frac{1±2i}{\frac{1}{2}} tenglamasini yeching, bunda ± manfiy. 1 dan 2i ni ayirish.
x=2-4i
1-2i ni \frac{1}{2} ga bo'lish 1-2i ga k'paytirish \frac{1}{2} ga qaytarish.
x=2+4i x=2-4i
Tenglama yechildi.
\frac{1}{4}x^{2}-x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{4}x^{2}-x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
\frac{1}{4}x^{2}-x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{\frac{1}{4}x^{2}-x}{\frac{1}{4}}=-\frac{5}{\frac{1}{4}}
Ikkala tarafini 4 ga ko‘paytiring.
x^{2}+\left(-\frac{1}{\frac{1}{4}}\right)x=-\frac{5}{\frac{1}{4}}
\frac{1}{4} ga bo'lish \frac{1}{4} ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{5}{\frac{1}{4}}
-1 ni \frac{1}{4} ga bo'lish -1 ga k'paytirish \frac{1}{4} ga qaytarish.
x^{2}-4x=-20
-5 ni \frac{1}{4} ga bo'lish -5 ga k'paytirish \frac{1}{4} ga qaytarish.
x^{2}-4x+\left(-2\right)^{2}=-20+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=-20+4
-2 kvadratini chiqarish.
x^{2}-4x+4=-16
-20 ni 4 ga qo'shish.
\left(x-2\right)^{2}=-16
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-16}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=4i x-2=-4i
Qisqartirish.
x=2+4i x=2-4i
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}