Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}=4x^{2}+144
Tenglamaning ikkala tarafini 36 ga, 4,9 ning eng kichik karralisiga ko‘paytiring.
9x^{2}-4x^{2}=144
Ikkala tarafdan 4x^{2} ni ayirish.
5x^{2}=144
5x^{2} ni olish uchun 9x^{2} va -4x^{2} ni birlashtirish.
x^{2}=\frac{144}{5}
Ikki tarafini 5 ga bo‘ling.
x=\frac{12\sqrt{5}}{5} x=-\frac{12\sqrt{5}}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
9x^{2}=4x^{2}+144
Tenglamaning ikkala tarafini 36 ga, 4,9 ning eng kichik karralisiga ko‘paytiring.
9x^{2}-4x^{2}=144
Ikkala tarafdan 4x^{2} ni ayirish.
5x^{2}=144
5x^{2} ni olish uchun 9x^{2} va -4x^{2} ni birlashtirish.
5x^{2}-144=0
Ikkala tarafdan 144 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-144\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 0 ni b va -144 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 5\left(-144\right)}}{2\times 5}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-20\left(-144\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{0±\sqrt{2880}}{2\times 5}
-20 ni -144 marotabaga ko'paytirish.
x=\frac{0±24\sqrt{5}}{2\times 5}
2880 ning kvadrat ildizini chiqarish.
x=\frac{0±24\sqrt{5}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{12\sqrt{5}}{5}
x=\frac{0±24\sqrt{5}}{10} tenglamasini yeching, bunda ± musbat.
x=-\frac{12\sqrt{5}}{5}
x=\frac{0±24\sqrt{5}}{10} tenglamasini yeching, bunda ± manfiy.
x=\frac{12\sqrt{5}}{5} x=-\frac{12\sqrt{5}}{5}
Tenglama yechildi.