Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{9}{4}\times 2
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}=\frac{9}{2}
\frac{9}{2} hosil qilish uchun \frac{9}{4} va 2 ni ko'paytirish.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{9}{4}\times 2
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}=\frac{9}{2}
\frac{9}{2} hosil qilish uchun \frac{9}{4} va 2 ni ko'paytirish.
x^{2}-\frac{9}{2}=0
Ikkala tarafdan \frac{9}{2} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{9}{2} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{9}{2}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{18}}{2}
-4 ni -\frac{9}{2} marotabaga ko'paytirish.
x=\frac{0±3\sqrt{2}}{2}
18 ning kvadrat ildizini chiqarish.
x=\frac{3\sqrt{2}}{2}
x=\frac{0±3\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{3\sqrt{2}}{2}
x=\frac{0±3\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tenglama yechildi.