Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=1600\left(x-82\right)^{2}
x qiymati 82 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x-82\right)^{2} ga ko'paytirish.
x^{2}=1600\left(x^{2}-164x+6724\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-82\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=1600x^{2}-262400x+10758400
1600 ga x^{2}-164x+6724 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1600x^{2}=-262400x+10758400
Ikkala tarafdan 1600x^{2} ni ayirish.
-1599x^{2}=-262400x+10758400
-1599x^{2} ni olish uchun x^{2} va -1600x^{2} ni birlashtirish.
-1599x^{2}+262400x=10758400
262400x ni ikki tarafga qo’shing.
-1599x^{2}+262400x-10758400=0
Ikkala tarafdan 10758400 ni ayirish.
x=\frac{-262400±\sqrt{262400^{2}-4\left(-1599\right)\left(-10758400\right)}}{2\left(-1599\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1599 ni a, 262400 ni b va -10758400 ni c bilan almashtiring.
x=\frac{-262400±\sqrt{68853760000-4\left(-1599\right)\left(-10758400\right)}}{2\left(-1599\right)}
262400 kvadratini chiqarish.
x=\frac{-262400±\sqrt{68853760000+6396\left(-10758400\right)}}{2\left(-1599\right)}
-4 ni -1599 marotabaga ko'paytirish.
x=\frac{-262400±\sqrt{68853760000-68810726400}}{2\left(-1599\right)}
6396 ni -10758400 marotabaga ko'paytirish.
x=\frac{-262400±\sqrt{43033600}}{2\left(-1599\right)}
68853760000 ni -68810726400 ga qo'shish.
x=\frac{-262400±6560}{2\left(-1599\right)}
43033600 ning kvadrat ildizini chiqarish.
x=\frac{-262400±6560}{-3198}
2 ni -1599 marotabaga ko'paytirish.
x=-\frac{255840}{-3198}
x=\frac{-262400±6560}{-3198} tenglamasini yeching, bunda ± musbat. -262400 ni 6560 ga qo'shish.
x=80
-255840 ni -3198 ga bo'lish.
x=-\frac{268960}{-3198}
x=\frac{-262400±6560}{-3198} tenglamasini yeching, bunda ± manfiy. -262400 dan 6560 ni ayirish.
x=\frac{3280}{39}
\frac{-268960}{-3198} ulushini 82 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=80 x=\frac{3280}{39}
Tenglama yechildi.
x^{2}=1600\left(x-82\right)^{2}
x qiymati 82 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(x-82\right)^{2} ga ko'paytirish.
x^{2}=1600\left(x^{2}-164x+6724\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-82\right)^{2} kengaytirilishi uchun ishlating.
x^{2}=1600x^{2}-262400x+10758400
1600 ga x^{2}-164x+6724 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1600x^{2}=-262400x+10758400
Ikkala tarafdan 1600x^{2} ni ayirish.
-1599x^{2}=-262400x+10758400
-1599x^{2} ni olish uchun x^{2} va -1600x^{2} ni birlashtirish.
-1599x^{2}+262400x=10758400
262400x ni ikki tarafga qo’shing.
\frac{-1599x^{2}+262400x}{-1599}=\frac{10758400}{-1599}
Ikki tarafini -1599 ga bo‘ling.
x^{2}+\frac{262400}{-1599}x=\frac{10758400}{-1599}
-1599 ga bo'lish -1599 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{6400}{39}x=\frac{10758400}{-1599}
\frac{262400}{-1599} ulushini 41 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{6400}{39}x=-\frac{262400}{39}
\frac{10758400}{-1599} ulushini 41 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{6400}{39}x+\left(-\frac{3200}{39}\right)^{2}=-\frac{262400}{39}+\left(-\frac{3200}{39}\right)^{2}
-\frac{6400}{39} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3200}{39} olish uchun. Keyin, -\frac{3200}{39} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{6400}{39}x+\frac{10240000}{1521}=-\frac{262400}{39}+\frac{10240000}{1521}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3200}{39} kvadratini chiqarish.
x^{2}-\frac{6400}{39}x+\frac{10240000}{1521}=\frac{6400}{1521}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{262400}{39} ni \frac{10240000}{1521} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3200}{39}\right)^{2}=\frac{6400}{1521}
x^{2}-\frac{6400}{39}x+\frac{10240000}{1521} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3200}{39}\right)^{2}}=\sqrt{\frac{6400}{1521}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3200}{39}=\frac{80}{39} x-\frac{3200}{39}=-\frac{80}{39}
Qisqartirish.
x=\frac{3280}{39} x=80
\frac{3200}{39} ni tenglamaning ikkala tarafiga qo'shish.