m uchun yechish (complex solution)
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 2\text{ and }x\neq 5\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=-2\end{matrix}\right,
n uchun yechish (complex solution)
n=-\left(mx+x+2\right)
x\neq 2\text{ and }x\neq 5
m uchun yechish
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 5\text{ and }x\neq 2\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=-2\end{matrix}\right,
n uchun yechish
n=-\left(mx+x+2\right)
x\neq 5\text{ and }x\neq 2
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
mx=-x-2-n
Ikkala tarafdan n ni ayirish.
xm=-x-n-2
Tenglama standart shaklda.
\frac{xm}{x}=\frac{-x-n-2}{x}
Ikki tarafini x ga bo‘ling.
m=\frac{-x-n-2}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
m=-\frac{x+n+2}{x}
-x-2-n ni x ga bo'lish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
n=-x-2-mx
Ikkala tarafdan mx ni ayirish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
mx=-x-2-n
Ikkala tarafdan n ni ayirish.
xm=-x-n-2
Tenglama standart shaklda.
\frac{xm}{x}=\frac{-x-n-2}{x}
Ikki tarafini x ga bo‘ling.
m=\frac{-x-n-2}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
m=-\frac{x+n+2}{x}
-x-2-n ni x ga bo'lish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
n=-x-2-mx
Ikkala tarafdan mx ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}