Asosiy tarkibga oʻtish
m uchun yechish (complex solution)
Tick mark Image
n uchun yechish (complex solution)
Tick mark Image
m uchun yechish
Tick mark Image
n uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
mx=-x-2-n
Ikkala tarafdan n ni ayirish.
xm=-x-n-2
Tenglama standart shaklda.
\frac{xm}{x}=\frac{-x-n-2}{x}
Ikki tarafini x ga bo‘ling.
m=\frac{-x-n-2}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
m=-\frac{x+n+2}{x}
-x-2-n ni x ga bo'lish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
n=-x-2-mx
Ikkala tarafdan mx ni ayirish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
mx=-x-2-n
Ikkala tarafdan n ni ayirish.
xm=-x-n-2
Tenglama standart shaklda.
\frac{xm}{x}=\frac{-x-n-2}{x}
Ikki tarafini x ga bo‘ling.
m=\frac{-x-n-2}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
m=-\frac{x+n+2}{x}
-x-2-n ni x ga bo'lish.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
Tenglamaning ikkala tarafini \left(x-5\right)\left(x-2\right) ga, x^{2}-7x+10,x-5 ning eng kichik karralisiga ko‘paytiring.
x^{2}+mx+n=x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
mx+n=x^{2}-x-2-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
mx+n=-x-2
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
n=-x-2-mx
Ikkala tarafdan mx ni ayirish.