x uchun yechish
x = \frac{2 \sqrt{15}}{3} \approx 2,581988897
x = -\frac{2 \sqrt{15}}{3} \approx -2,581988897
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+7^{2}-4^{2}=7^{2}+4x^{2}-36
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14x ga ko'paytirish.
x^{2}+49-4^{2}=7^{2}+4x^{2}-36
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x^{2}+49-16=7^{2}+4x^{2}-36
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
x^{2}+33=7^{2}+4x^{2}-36
33 olish uchun 49 dan 16 ni ayirish.
x^{2}+33=49+4x^{2}-36
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x^{2}+33=13+4x^{2}
13 olish uchun 49 dan 36 ni ayirish.
x^{2}+33-4x^{2}=13
Ikkala tarafdan 4x^{2} ni ayirish.
-3x^{2}+33=13
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
-3x^{2}=13-33
Ikkala tarafdan 33 ni ayirish.
-3x^{2}=-20
-20 olish uchun 13 dan 33 ni ayirish.
x^{2}=\frac{-20}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}=\frac{20}{3}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-20}{-3} kasrini \frac{20}{3} ga soddalashtirish mumkin.
x=\frac{2\sqrt{15}}{3} x=-\frac{2\sqrt{15}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}+7^{2}-4^{2}=7^{2}+4x^{2}-36
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 14x ga ko'paytirish.
x^{2}+49-4^{2}=7^{2}+4x^{2}-36
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x^{2}+49-16=7^{2}+4x^{2}-36
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
x^{2}+33=7^{2}+4x^{2}-36
33 olish uchun 49 dan 16 ni ayirish.
x^{2}+33=49+4x^{2}-36
2 daraja ko‘rsatkichini 7 ga hisoblang va 49 ni qiymatni oling.
x^{2}+33=13+4x^{2}
13 olish uchun 49 dan 36 ni ayirish.
x^{2}+33-13=4x^{2}
Ikkala tarafdan 13 ni ayirish.
x^{2}+20=4x^{2}
20 olish uchun 33 dan 13 ni ayirish.
x^{2}+20-4x^{2}=0
Ikkala tarafdan 4x^{2} ni ayirish.
-3x^{2}+20=0
-3x^{2} ni olish uchun x^{2} va -4x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 20}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 0 ni b va 20 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-3\right)\times 20}}{2\left(-3\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{12\times 20}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{0±\sqrt{240}}{2\left(-3\right)}
12 ni 20 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{15}}{2\left(-3\right)}
240 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{15}}{-6}
2 ni -3 marotabaga ko'paytirish.
x=-\frac{2\sqrt{15}}{3}
x=\frac{0±4\sqrt{15}}{-6} tenglamasini yeching, bunda ± musbat.
x=\frac{2\sqrt{15}}{3}
x=\frac{0±4\sqrt{15}}{-6} tenglamasini yeching, bunda ± manfiy.
x=-\frac{2\sqrt{15}}{3} x=\frac{2\sqrt{15}}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}