Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Tenglamaning ikkala tarafini 12 ga, 3,4,12 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8-3x^{2}-3=x+5
-3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+8-3=x+5
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x^{2}+5=x+5
5 olish uchun 8 dan 3 ni ayirish.
x^{2}+5-x=5
Ikkala tarafdan x ni ayirish.
x^{2}+5-x-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-x=0
0 olish uchun 5 dan 5 ni ayirish.
x\left(x-1\right)=0
x omili.
x=0 x=1
Tenglamani yechish uchun x=0 va x-1=0 ni yeching.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Tenglamaning ikkala tarafini 12 ga, 3,4,12 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8-3x^{2}-3=x+5
-3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+8-3=x+5
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x^{2}+5=x+5
5 olish uchun 8 dan 3 ni ayirish.
x^{2}+5-x=5
Ikkala tarafdan x ni ayirish.
x^{2}+5-x-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-x=0
0 olish uchun 5 dan 5 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±1}{2}
1 ning kvadrat ildizini chiqarish.
x=\frac{1±1}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{2}{2}
x=\frac{1±1}{2} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
x=1
2 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{1±1}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=1 x=0
Tenglama yechildi.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Tenglamaning ikkala tarafini 12 ga, 3,4,12 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8-3x^{2}-3=x+5
-3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+8-3=x+5
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x^{2}+5=x+5
5 olish uchun 8 dan 3 ni ayirish.
x^{2}+5-x=5
Ikkala tarafdan x ni ayirish.
x^{2}+5-x-5=0
Ikkala tarafdan 5 ni ayirish.
x^{2}-x=0
0 olish uchun 5 dan 5 ni ayirish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=1 x=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.