x uchun yechish
x=-1
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Tenglamaning ikkala tarafini 12 ga, 3,12,4 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
15 olish uchun 8 va 7'ni qo'shing.
4x^{2}+15+x=12+3x^{2}+3
3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=15+3x^{2}
15 olish uchun 12 va 3'ni qo'shing.
4x^{2}+15+x-15=3x^{2}
Ikkala tarafdan 15 ni ayirish.
4x^{2}+x=3x^{2}
0 olish uchun 15 dan 15 ni ayirish.
4x^{2}+x-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
x^{2}+x=0
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x\left(x+1\right)=0
x omili.
x=0 x=-1
Tenglamani yechish uchun x=0 va x+1=0 ni yeching.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Tenglamaning ikkala tarafini 12 ga, 3,12,4 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
15 olish uchun 8 va 7'ni qo'shing.
4x^{2}+15+x=12+3x^{2}+3
3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=15+3x^{2}
15 olish uchun 12 va 3'ni qo'shing.
4x^{2}+15+x-15=3x^{2}
Ikkala tarafdan 15 ni ayirish.
4x^{2}+x=3x^{2}
0 olish uchun 15 dan 15 ni ayirish.
4x^{2}+x-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
x^{2}+x=0
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x=\frac{-1±\sqrt{1^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va 0 ni c bilan almashtiring.
x=\frac{-1±1}{2}
1^{2} ning kvadrat ildizini chiqarish.
x=\frac{0}{2}
x=\frac{-1±1}{2} tenglamasini yeching, bunda ± musbat. -1 ni 1 ga qo'shish.
x=0
0 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{-1±1}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 1 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=0 x=-1
Tenglama yechildi.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
Tenglamaning ikkala tarafini 12 ga, 3,12,4 ning eng kichik karralisiga ko‘paytiring.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
4 ga x^{2}+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
15 olish uchun 8 va 7'ni qo'shing.
4x^{2}+15+x=12+3x^{2}+3
3 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+15+x=15+3x^{2}
15 olish uchun 12 va 3'ni qo'shing.
4x^{2}+15+x-15=3x^{2}
Ikkala tarafdan 15 ni ayirish.
4x^{2}+x=3x^{2}
0 olish uchun 15 dan 15 ni ayirish.
4x^{2}+x-3x^{2}=0
Ikkala tarafdan 3x^{2} ni ayirish.
x^{2}+x=0
x^{2} ni olish uchun 4x^{2} va -3x^{2} ni birlashtirish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
x=0 x=-1
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}