x uchun yechish
x=-1
x=1
x=2
x=-2
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}\left(x^{2}+1\right)+4=6x^{2}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4x^{2} ga, 4,x^{2},2 ning eng kichik karralisiga ko‘paytiring.
x^{4}+x^{2}+4=6x^{2}
x^{2} ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{4}+x^{2}+4-6x^{2}=0
Ikkala tarafdan 6x^{2} ni ayirish.
x^{4}-5x^{2}+4=0
-5x^{2} ni olish uchun x^{2} va -6x^{2} ni birlashtirish.
t^{2}-5t+4=0
x^{2} uchun t ni almashtiring.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 4}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -5 ni va c uchun 4 ni ayiring.
t=\frac{5±3}{2}
Hisoblarni amalga oshiring.
t=4 t=1
t=\frac{5±3}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=2 x=-2 x=1 x=-1
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}