Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
x qiymati -6,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+6\right) ga, x-3,x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
x+6 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
x-3 ga x-6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
0 ni olish uchun 9x va -9x ni birlashtirish.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
36 olish uchun 18 va 18'ni qo'shing.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
11 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+36=11x^{2}+33x-198
11x-33 ga x+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+36-11x^{2}=33x-198
Ikkala tarafdan 11x^{2} ni ayirish.
-9x^{2}+36=33x-198
-9x^{2} ni olish uchun 2x^{2} va -11x^{2} ni birlashtirish.
-9x^{2}+36-33x=-198
Ikkala tarafdan 33x ni ayirish.
-9x^{2}+36-33x+198=0
198 ni ikki tarafga qo’shing.
-9x^{2}+234-33x=0
234 olish uchun 36 va 198'ni qo'shing.
-9x^{2}-33x+234=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\left(-9\right)\times 234}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, -33 ni b va 234 ni c bilan almashtiring.
x=\frac{-\left(-33\right)±\sqrt{1089-4\left(-9\right)\times 234}}{2\left(-9\right)}
-33 kvadratini chiqarish.
x=\frac{-\left(-33\right)±\sqrt{1089+36\times 234}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-33\right)±\sqrt{1089+8424}}{2\left(-9\right)}
36 ni 234 marotabaga ko'paytirish.
x=\frac{-\left(-33\right)±\sqrt{9513}}{2\left(-9\right)}
1089 ni 8424 ga qo'shish.
x=\frac{-\left(-33\right)±3\sqrt{1057}}{2\left(-9\right)}
9513 ning kvadrat ildizini chiqarish.
x=\frac{33±3\sqrt{1057}}{2\left(-9\right)}
-33 ning teskarisi 33 ga teng.
x=\frac{33±3\sqrt{1057}}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{3\sqrt{1057}+33}{-18}
x=\frac{33±3\sqrt{1057}}{-18} tenglamasini yeching, bunda ± musbat. 33 ni 3\sqrt{1057} ga qo'shish.
x=\frac{-\sqrt{1057}-11}{6}
33+3\sqrt{1057} ni -18 ga bo'lish.
x=\frac{33-3\sqrt{1057}}{-18}
x=\frac{33±3\sqrt{1057}}{-18} tenglamasini yeching, bunda ± manfiy. 33 dan 3\sqrt{1057} ni ayirish.
x=\frac{\sqrt{1057}-11}{6}
33-3\sqrt{1057} ni -18 ga bo'lish.
x=\frac{-\sqrt{1057}-11}{6} x=\frac{\sqrt{1057}-11}{6}
Tenglama yechildi.
\left(x+6\right)\left(x+3\right)+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
x qiymati -6,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+6\right) ga, x-3,x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}+9x+18+\left(x-3\right)\left(x-6\right)=11\left(x-3\right)\left(x+6\right)
x+6 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+9x+18+x^{2}-9x+18=11\left(x-3\right)\left(x+6\right)
x-3 ga x-6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+9x+18-9x+18=11\left(x-3\right)\left(x+6\right)
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+18+18=11\left(x-3\right)\left(x+6\right)
0 ni olish uchun 9x va -9x ni birlashtirish.
2x^{2}+36=11\left(x-3\right)\left(x+6\right)
36 olish uchun 18 va 18'ni qo'shing.
2x^{2}+36=\left(11x-33\right)\left(x+6\right)
11 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+36=11x^{2}+33x-198
11x-33 ga x+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+36-11x^{2}=33x-198
Ikkala tarafdan 11x^{2} ni ayirish.
-9x^{2}+36=33x-198
-9x^{2} ni olish uchun 2x^{2} va -11x^{2} ni birlashtirish.
-9x^{2}+36-33x=-198
Ikkala tarafdan 33x ni ayirish.
-9x^{2}-33x=-198-36
Ikkala tarafdan 36 ni ayirish.
-9x^{2}-33x=-234
-234 olish uchun -198 dan 36 ni ayirish.
\frac{-9x^{2}-33x}{-9}=-\frac{234}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\left(-\frac{33}{-9}\right)x=-\frac{234}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{3}x=-\frac{234}{-9}
\frac{-33}{-9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{11}{3}x=26
-234 ni -9 ga bo'lish.
x^{2}+\frac{11}{3}x+\left(\frac{11}{6}\right)^{2}=26+\left(\frac{11}{6}\right)^{2}
\frac{11}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{6} olish uchun. Keyin, \frac{11}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{3}x+\frac{121}{36}=26+\frac{121}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{6} kvadratini chiqarish.
x^{2}+\frac{11}{3}x+\frac{121}{36}=\frac{1057}{36}
26 ni \frac{121}{36} ga qo'shish.
\left(x+\frac{11}{6}\right)^{2}=\frac{1057}{36}
x^{2}+\frac{11}{3}x+\frac{121}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{6}\right)^{2}}=\sqrt{\frac{1057}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{6}=\frac{\sqrt{1057}}{6} x+\frac{11}{6}=-\frac{\sqrt{1057}}{6}
Qisqartirish.
x=\frac{\sqrt{1057}-11}{6} x=\frac{-\sqrt{1057}-11}{6}
Tenglamaning ikkala tarafidan \frac{11}{6} ni ayirish.