x uchun yechish
x=-3
Grafik
Viktorina
Quadratic Equation
\frac { x + 3 } { x + 9 } + \frac { 7 } { x - 9 } = \frac { 7 } { x - 9 }
Baham ko'rish
Klipbordga nusxa olish
\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
x qiymati -9,9 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-9\right)\left(x+9\right) ga, x+9,x-9 ning eng kichik karralisiga ko‘paytiring.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
x-9 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
x+9 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-27+63=\left(x+9\right)\times 7
x ni olish uchun -6x va 7x ni birlashtirish.
x^{2}+x+36=\left(x+9\right)\times 7
36 olish uchun -27 va 63'ni qo'shing.
x^{2}+x+36=7x+63
x+9 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x+36-7x=63
Ikkala tarafdan 7x ni ayirish.
x^{2}-6x+36=63
-6x ni olish uchun x va -7x ni birlashtirish.
x^{2}-6x+36-63=0
Ikkala tarafdan 63 ni ayirish.
x^{2}-6x-27=0
-27 olish uchun 36 dan 63 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -27 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
-4 ni -27 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
36 ni 108 ga qo'shish.
x=\frac{-\left(-6\right)±12}{2}
144 ning kvadrat ildizini chiqarish.
x=\frac{6±12}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{18}{2}
x=\frac{6±12}{2} tenglamasini yeching, bunda ± musbat. 6 ni 12 ga qo'shish.
x=9
18 ni 2 ga bo'lish.
x=-\frac{6}{2}
x=\frac{6±12}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 12 ni ayirish.
x=-3
-6 ni 2 ga bo'lish.
x=9 x=-3
Tenglama yechildi.
x=-3
x qiymati 9 teng bo‘lmaydi.
\left(x-9\right)\left(x+3\right)+\left(x+9\right)\times 7=\left(x+9\right)\times 7
x qiymati -9,9 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-9\right)\left(x+9\right) ga, x+9,x-9 ning eng kichik karralisiga ko‘paytiring.
x^{2}-6x-27+\left(x+9\right)\times 7=\left(x+9\right)\times 7
x-9 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-6x-27+7x+63=\left(x+9\right)\times 7
x+9 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x-27+63=\left(x+9\right)\times 7
x ni olish uchun -6x va 7x ni birlashtirish.
x^{2}+x+36=\left(x+9\right)\times 7
36 olish uchun -27 va 63'ni qo'shing.
x^{2}+x+36=7x+63
x+9 ga 7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+x+36-7x=63
Ikkala tarafdan 7x ni ayirish.
x^{2}-6x+36=63
-6x ni olish uchun x va -7x ni birlashtirish.
x^{2}-6x=63-36
Ikkala tarafdan 36 ni ayirish.
x^{2}-6x=27
27 olish uchun 63 dan 36 ni ayirish.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=27+9
-3 kvadratini chiqarish.
x^{2}-6x+9=36
27 ni 9 ga qo'shish.
\left(x-3\right)^{2}=36
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=6 x-3=-6
Qisqartirish.
x=9 x=-3
3 ni tenglamaning ikkala tarafiga qo'shish.
x=-3
x qiymati 9 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}