Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+4\right)\left(x+3\right)=2\times 5
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+4\right) ga, 2,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+7x+12=2\times 5
x+4 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+7x+12=10
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
x^{2}+7x+12-10=0
Ikkala tarafdan 10 ni ayirish.
x^{2}+7x+2=0
2 olish uchun 12 dan 10 ni ayirish.
x=\frac{-7±\sqrt{7^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 7 ni b va 2 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 2}}{2}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{41}}{2}
49 ni -8 ga qo'shish.
x=\frac{\sqrt{41}-7}{2}
x=\frac{-7±\sqrt{41}}{2} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{41} ga qo'shish.
x=\frac{-\sqrt{41}-7}{2}
x=\frac{-7±\sqrt{41}}{2} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Tenglama yechildi.
\left(x+4\right)\left(x+3\right)=2\times 5
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+4\right) ga, 2,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+7x+12=2\times 5
x+4 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+7x+12=10
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
x^{2}+7x=10-12
Ikkala tarafdan 12 ni ayirish.
x^{2}+7x=-2
-2 olish uchun 10 dan 12 ni ayirish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-2+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=-2+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{41}{4}
-2 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{41}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{\sqrt{41}}{2} x+\frac{7}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.