x uchun yechish
x=\frac{\sqrt{41}-7}{2}\approx -0,298437881
x=\frac{-\sqrt{41}-7}{2}\approx -6,701562119
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+4\right)\left(x+3\right)=2\times 5
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+4\right) ga, 2,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+7x+12=2\times 5
x+4 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+7x+12=10
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
x^{2}+7x+12-10=0
Ikkala tarafdan 10 ni ayirish.
x^{2}+7x+2=0
2 olish uchun 12 dan 10 ni ayirish.
x=\frac{-7±\sqrt{7^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 7 ni b va 2 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 2}}{2}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{41}}{2}
49 ni -8 ga qo'shish.
x=\frac{\sqrt{41}-7}{2}
x=\frac{-7±\sqrt{41}}{2} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{41} ga qo'shish.
x=\frac{-\sqrt{41}-7}{2}
x=\frac{-7±\sqrt{41}}{2} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Tenglama yechildi.
\left(x+4\right)\left(x+3\right)=2\times 5
x qiymati -4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(x+4\right) ga, 2,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+7x+12=2\times 5
x+4 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+7x+12=10
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
x^{2}+7x=10-12
Ikkala tarafdan 12 ni ayirish.
x^{2}+7x=-2
-2 olish uchun 10 dan 12 ni ayirish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-2+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=-2+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{41}{4}
-2 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{41}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{\sqrt{41}}{2} x+\frac{7}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}-7}{2} x=\frac{-\sqrt{41}-7}{2}
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}