x uchun yechish (complex solution)
x=\frac{7+\sqrt{119}i}{12}\approx 0,583333333+0,909059343i
x=\frac{-\sqrt{119}i+7}{12}\approx 0,583333333-0,909059343i
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { x + 1 } { 3 x - 1 } = 1 - \frac { 2 x + 1 } { 4 }
Baham ko'rish
Klipbordga nusxa olish
4\left(x+1\right)=4\left(3x-1\right)-\left(3x-1\right)\left(2x+1\right)
x qiymati \frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(3x-1\right) ga, 3x-1,4 ning eng kichik karralisiga ko‘paytiring.
4x+4=4\left(3x-1\right)-\left(3x-1\right)\left(2x+1\right)
4 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4=12x-4-\left(3x-1\right)\left(2x+1\right)
4 ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4=12x-4-\left(6x^{2}+x-1\right)
3x-1 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x+4=12x-4-6x^{2}-x+1
6x^{2}+x-1 teskarisini topish uchun har birining teskarisini toping.
4x+4=11x-4-6x^{2}+1
11x ni olish uchun 12x va -x ni birlashtirish.
4x+4=11x-3-6x^{2}
-3 olish uchun -4 va 1'ni qo'shing.
4x+4-11x=-3-6x^{2}
Ikkala tarafdan 11x ni ayirish.
-7x+4=-3-6x^{2}
-7x ni olish uchun 4x va -11x ni birlashtirish.
-7x+4-\left(-3\right)=-6x^{2}
Ikkala tarafdan -3 ni ayirish.
-7x+4+3=-6x^{2}
-3 ning teskarisi 3 ga teng.
-7x+4+3+6x^{2}=0
6x^{2} ni ikki tarafga qo’shing.
-7x+7+6x^{2}=0
7 olish uchun 4 va 3'ni qo'shing.
6x^{2}-7x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\times 7}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -7 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\times 7}}{2\times 6}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-24\times 7}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49-168}}{2\times 6}
-24 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{-119}}{2\times 6}
49 ni -168 ga qo'shish.
x=\frac{-\left(-7\right)±\sqrt{119}i}{2\times 6}
-119 ning kvadrat ildizini chiqarish.
x=\frac{7±\sqrt{119}i}{2\times 6}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{119}i}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{7+\sqrt{119}i}{12}
x=\frac{7±\sqrt{119}i}{12} tenglamasini yeching, bunda ± musbat. 7 ni i\sqrt{119} ga qo'shish.
x=\frac{-\sqrt{119}i+7}{12}
x=\frac{7±\sqrt{119}i}{12} tenglamasini yeching, bunda ± manfiy. 7 dan i\sqrt{119} ni ayirish.
x=\frac{7+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+7}{12}
Tenglama yechildi.
4\left(x+1\right)=4\left(3x-1\right)-\left(3x-1\right)\left(2x+1\right)
x qiymati \frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(3x-1\right) ga, 3x-1,4 ning eng kichik karralisiga ko‘paytiring.
4x+4=4\left(3x-1\right)-\left(3x-1\right)\left(2x+1\right)
4 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4=12x-4-\left(3x-1\right)\left(2x+1\right)
4 ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+4=12x-4-\left(6x^{2}+x-1\right)
3x-1 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x+4=12x-4-6x^{2}-x+1
6x^{2}+x-1 teskarisini topish uchun har birining teskarisini toping.
4x+4=11x-4-6x^{2}+1
11x ni olish uchun 12x va -x ni birlashtirish.
4x+4=11x-3-6x^{2}
-3 olish uchun -4 va 1'ni qo'shing.
4x+4-11x=-3-6x^{2}
Ikkala tarafdan 11x ni ayirish.
-7x+4=-3-6x^{2}
-7x ni olish uchun 4x va -11x ni birlashtirish.
-7x+4+6x^{2}=-3
6x^{2} ni ikki tarafga qo’shing.
-7x+6x^{2}=-3-4
Ikkala tarafdan 4 ni ayirish.
-7x+6x^{2}=-7
-7 olish uchun -3 dan 4 ni ayirish.
6x^{2}-7x=-7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6x^{2}-7x}{6}=-\frac{7}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}-\frac{7}{6}x=-\frac{7}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=-\frac{7}{6}+\left(-\frac{7}{12}\right)^{2}
-\frac{7}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{12} olish uchun. Keyin, -\frac{7}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{7}{6}+\frac{49}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{12} kvadratini chiqarish.
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{119}{144}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{6} ni \frac{49}{144} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{12}\right)^{2}=-\frac{119}{144}
x^{2}-\frac{7}{6}x+\frac{49}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{-\frac{119}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{12}=\frac{\sqrt{119}i}{12} x-\frac{7}{12}=-\frac{\sqrt{119}i}{12}
Qisqartirish.
x=\frac{7+\sqrt{119}i}{12} x=\frac{-\sqrt{119}i+7}{12}
\frac{7}{12} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}