w uchun yechish
w=-2
Baham ko'rish
Klipbordga nusxa olish
w^{2}-8=2w
w qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w-4 ga ko'paytirish.
w^{2}-8-2w=0
Ikkala tarafdan 2w ni ayirish.
w^{2}-2w-8=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-2 ab=-8
Bu tenglamani yechish uchun w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right) formulasi yordamida w^{2}-2w-8 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-8 2,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -8-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-8=-7 2-4=-2
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=2
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(w-4\right)\left(w+2\right)
Faktorlangan \left(w+a\right)\left(w+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
w=4 w=-2
Tenglamani yechish uchun w-4=0 va w+2=0 ni yeching.
w=-2
w qiymati 4 teng bo‘lmaydi.
w^{2}-8=2w
w qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w-4 ga ko'paytirish.
w^{2}-8-2w=0
Ikkala tarafdan 2w ni ayirish.
w^{2}-2w-8=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-2 ab=1\left(-8\right)=-8
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon w^{2}+aw+bw-8 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-8 2,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -8-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-8=-7 2-4=-2
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=2
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(w^{2}-4w\right)+\left(2w-8\right)
w^{2}-2w-8 ni \left(w^{2}-4w\right)+\left(2w-8\right) sifatida qaytadan yozish.
w\left(w-4\right)+2\left(w-4\right)
Birinchi guruhda w ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(w-4\right)\left(w+2\right)
Distributiv funktsiyasidan foydalangan holda w-4 umumiy terminini chiqaring.
w=4 w=-2
Tenglamani yechish uchun w-4=0 va w+2=0 ni yeching.
w=-2
w qiymati 4 teng bo‘lmaydi.
w^{2}-8=2w
w qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w-4 ga ko'paytirish.
w^{2}-8-2w=0
Ikkala tarafdan 2w ni ayirish.
w^{2}-2w-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -8 ni c bilan almashtiring.
w=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
-2 kvadratini chiqarish.
w=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
-4 ni -8 marotabaga ko'paytirish.
w=\frac{-\left(-2\right)±\sqrt{36}}{2}
4 ni 32 ga qo'shish.
w=\frac{-\left(-2\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
w=\frac{2±6}{2}
-2 ning teskarisi 2 ga teng.
w=\frac{8}{2}
w=\frac{2±6}{2} tenglamasini yeching, bunda ± musbat. 2 ni 6 ga qo'shish.
w=4
8 ni 2 ga bo'lish.
w=-\frac{4}{2}
w=\frac{2±6}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 6 ni ayirish.
w=-2
-4 ni 2 ga bo'lish.
w=4 w=-2
Tenglama yechildi.
w=-2
w qiymati 4 teng bo‘lmaydi.
w^{2}-8=2w
w qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini w-4 ga ko'paytirish.
w^{2}-8-2w=0
Ikkala tarafdan 2w ni ayirish.
w^{2}-2w=8
8 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
w^{2}-2w+1=8+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}-2w+1=9
8 ni 1 ga qo'shish.
\left(w-1\right)^{2}=9
w^{2}-2w+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w-1\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w-1=3 w-1=-3
Qisqartirish.
w=4 w=-2
1 ni tenglamaning ikkala tarafiga qo'shish.
w=-2
w qiymati 4 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}