Baholash
\frac{v-9}{\left(v+7\right)\left(v+9\right)}
v ga nisbatan hosilani topish
\frac{207+18v-v^{2}}{v^{4}+32v^{3}+382v^{2}+2016v+3969}
Baham ko'rish
Klipbordga nusxa olish
\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)}
Faktor: v^{2}+17v+72. Faktor: v^{2}+15v+56.
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(v+8\right)\left(v+9\right) va \left(v+7\right)\left(v+8\right) ning eng kichik umumiy karralisi \left(v+7\right)\left(v+8\right)\left(v+9\right). \frac{v}{\left(v+8\right)\left(v+9\right)} ni \frac{v+7}{v+7} marotabaga ko'paytirish. \frac{8}{\left(v+7\right)\left(v+8\right)} ni \frac{v+9}{v+9} marotabaga ko'paytirish.
\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} va \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
v\left(v+7\right)-8\left(v+9\right) ichidagi ko‘paytirishlarni bajaring.
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
v^{2}+7v-8v-72 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{v-9}{\left(v+7\right)\left(v+9\right)}
Surat va maxrajdagi ikkala v+8 ni qisqartiring.
\frac{v-9}{v^{2}+16v+63}
\left(v+7\right)\left(v+9\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v}{\left(v+8\right)\left(v+9\right)}-\frac{8}{\left(v+7\right)\left(v+8\right)})
Faktor: v^{2}+17v+72. Faktor: v^{2}+15v+56.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)}-\frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(v+8\right)\left(v+9\right) va \left(v+7\right)\left(v+8\right) ning eng kichik umumiy karralisi \left(v+7\right)\left(v+8\right)\left(v+9\right). \frac{v}{\left(v+8\right)\left(v+9\right)} ni \frac{v+7}{v+7} marotabaga ko'paytirish. \frac{8}{\left(v+7\right)\left(v+8\right)} ni \frac{v+9}{v+9} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v+7\right)-8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
\frac{v\left(v+7\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} va \frac{8\left(v+9\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+7v-8v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
v\left(v+7\right)-8\left(v+9\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
v^{2}+7v-8v-72 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-9\right)\left(v+8\right)}{\left(v+7\right)\left(v+8\right)\left(v+9\right)})
\frac{v^{2}-v-72}{\left(v+7\right)\left(v+8\right)\left(v+9\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{\left(v+7\right)\left(v+9\right)})
Surat va maxrajdagi ikkala v+8 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v-9}{v^{2}+16v+63})
v+7 ga v+9 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{\left(v^{2}+16v^{1}+63\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}-9)-\left(v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{2}+16v^{1}+63)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(v^{2}+16v^{1}+63\right)v^{1-1}-\left(v^{1}-9\right)\left(2v^{2-1}+16v^{1-1}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(v^{2}+16v^{1}+63\right)v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Qisqartirish.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}-9\right)\left(2v^{1}+16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
v^{2}+16v^{1}+63 ni v^{0} marotabaga ko'paytirish.
\frac{v^{2}v^{0}+16v^{1}v^{0}+63v^{0}-\left(v^{1}\times 2v^{1}+v^{1}\times 16v^{0}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
v^{1}-9 ni 2v^{1}+16v^{0} marotabaga ko'paytirish.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{1+1}+16v^{1}-9\times 2v^{1}-9\times 16v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{v^{2}+16v^{1}+63v^{0}-\left(2v^{2}+16v^{1}-18v^{1}-144v^{0}\right)}{\left(v^{2}+16v^{1}+63\right)^{2}}
Qisqartirish.
\frac{-v^{2}+18v^{1}+207v^{0}}{\left(v^{2}+16v^{1}+63\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-v^{2}+18v+207v^{0}}{\left(v^{2}+16v+63\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-v^{2}+18v+207\times 1}{\left(v^{2}+16v+63\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{-v^{2}+18v+207}{\left(v^{2}+16v+63\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}