Baholash
\frac{v+3}{v+1}
v ga nisbatan hosilani topish
-\frac{2}{\left(v+1\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. v+1 va v-1 ning eng kichik umumiy karralisi \left(v-1\right)\left(v+1\right). \frac{v}{v+1} ni \frac{v-1}{v-1} marotabaga ko'paytirish. \frac{3}{v-1} ni \frac{v+1}{v+1} marotabaga ko'paytirish.
\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} va \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v\left(v-1\right)+3\left(v+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1}
v^{2}-v+3v+3 kabi iboralarga o‘xshab birlashtiring.
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)}
Faktor: v^{2}-1.
\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)}
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} va \frac{6}{\left(v-1\right)\left(v+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)}
v^{2}+2v+3-6 kabi iboralarga o‘xshab birlashtiring.
\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)}
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{v+3}{v+1}
Surat va maxrajdagi ikkala v-1 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)}+\frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. v+1 va v-1 ning eng kichik umumiy karralisi \left(v-1\right)\left(v+1\right). \frac{v}{v+1} ni \frac{v-1}{v-1} marotabaga ko'paytirish. \frac{3}{v-1} ni \frac{v+1}{v+1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v\left(v-1\right)+3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
\frac{v\left(v-1\right)}{\left(v-1\right)\left(v+1\right)} va \frac{3\left(v+1\right)}{\left(v-1\right)\left(v+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}-v+3v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v\left(v-1\right)+3\left(v+1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{v^{2}-1})
v^{2}-v+3v+3 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)}-\frac{6}{\left(v-1\right)\left(v+1\right)})
Faktor: v^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v+3-6}{\left(v-1\right)\left(v+1\right)})
\frac{v^{2}+2v+3}{\left(v-1\right)\left(v+1\right)} va \frac{6}{\left(v-1\right)\left(v+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)})
v^{2}+2v+3-6 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{\left(v-1\right)\left(v+3\right)}{\left(v-1\right)\left(v+1\right)})
\frac{v^{2}+2v-3}{\left(v-1\right)\left(v+1\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\mathrm{d}}{\mathrm{d}v}(\frac{v+3}{v+1})
Surat va maxrajdagi ikkala v-1 ni qisqartiring.
\frac{\left(v^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+3)-\left(v^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}v}(v^{1}+1)}{\left(v^{1}+1\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(v^{1}+1\right)v^{1-1}-\left(v^{1}+3\right)v^{1-1}}{\left(v^{1}+1\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(v^{1}+1\right)v^{0}-\left(v^{1}+3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{v^{1}v^{0}+v^{0}-\left(v^{1}v^{0}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{v^{1}+v^{0}-\left(v^{1}+3v^{0}\right)}{\left(v^{1}+1\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{v^{1}+v^{0}-v^{1}-3v^{0}}{\left(v^{1}+1\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(1-1\right)v^{1}+\left(1-3\right)v^{0}}{\left(v^{1}+1\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-2v^{0}}{\left(v^{1}+1\right)^{2}}
1 dan 1 ni va 1 dan 3 ni ayiring.
\frac{-2v^{0}}{\left(v+1\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-2}{\left(v+1\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}