u uchun yechish
u=2
u=7
Baham ko'rish
Klipbordga nusxa olish
\left(u-3\right)\left(u+2\right)+\left(u-4\right)\left(u-3\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(u-4\right)\left(u-3\right) ga, u-4,u-3 ning eng kichik karralisiga ko‘paytiring.
u^{2}-u-6+\left(u-4\right)\left(u-3\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u-3 ga u+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}-u-6+\left(u^{2}-7u+12\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u-4 ga u-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}-u-6-u^{2}+7u-12=\left(u-4\right)\left(u+1\right)
u^{2}-7u+12 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-u-6+7u-12=\left(u-4\right)\left(u+1\right)
0 ni olish uchun u^{2} va -u^{2} ni birlashtirish.
6u-6-12=\left(u-4\right)\left(u+1\right)
6u ni olish uchun -u va 7u ni birlashtirish.
6u-18=\left(u-4\right)\left(u+1\right)
-18 olish uchun -6 dan 12 ni ayirish.
6u-18=u^{2}-3u-4
u-4 ga u+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6u-18-u^{2}=-3u-4
Ikkala tarafdan u^{2} ni ayirish.
6u-18-u^{2}+3u=-4
3u ni ikki tarafga qo’shing.
9u-18-u^{2}=-4
9u ni olish uchun 6u va 3u ni birlashtirish.
9u-18-u^{2}+4=0
4 ni ikki tarafga qo’shing.
9u-14-u^{2}=0
-14 olish uchun -18 va 4'ni qo'shing.
-u^{2}+9u-14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
u=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 9 ni b va -14 ni c bilan almashtiring.
u=\frac{-9±\sqrt{81-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
9 kvadratini chiqarish.
u=\frac{-9±\sqrt{81+4\left(-14\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
u=\frac{-9±\sqrt{81-56}}{2\left(-1\right)}
4 ni -14 marotabaga ko'paytirish.
u=\frac{-9±\sqrt{25}}{2\left(-1\right)}
81 ni -56 ga qo'shish.
u=\frac{-9±5}{2\left(-1\right)}
25 ning kvadrat ildizini chiqarish.
u=\frac{-9±5}{-2}
2 ni -1 marotabaga ko'paytirish.
u=-\frac{4}{-2}
u=\frac{-9±5}{-2} tenglamasini yeching, bunda ± musbat. -9 ni 5 ga qo'shish.
u=2
-4 ni -2 ga bo'lish.
u=-\frac{14}{-2}
u=\frac{-9±5}{-2} tenglamasini yeching, bunda ± manfiy. -9 dan 5 ni ayirish.
u=7
-14 ni -2 ga bo'lish.
u=2 u=7
Tenglama yechildi.
\left(u-3\right)\left(u+2\right)+\left(u-4\right)\left(u-3\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(u-4\right)\left(u-3\right) ga, u-4,u-3 ning eng kichik karralisiga ko‘paytiring.
u^{2}-u-6+\left(u-4\right)\left(u-3\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u-3 ga u+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}-u-6+\left(u^{2}-7u+12\right)\left(-1\right)=\left(u-4\right)\left(u+1\right)
u-4 ga u-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}-u-6-u^{2}+7u-12=\left(u-4\right)\left(u+1\right)
u^{2}-7u+12 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-u-6+7u-12=\left(u-4\right)\left(u+1\right)
0 ni olish uchun u^{2} va -u^{2} ni birlashtirish.
6u-6-12=\left(u-4\right)\left(u+1\right)
6u ni olish uchun -u va 7u ni birlashtirish.
6u-18=\left(u-4\right)\left(u+1\right)
-18 olish uchun -6 dan 12 ni ayirish.
6u-18=u^{2}-3u-4
u-4 ga u+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6u-18-u^{2}=-3u-4
Ikkala tarafdan u^{2} ni ayirish.
6u-18-u^{2}+3u=-4
3u ni ikki tarafga qo’shing.
9u-18-u^{2}=-4
9u ni olish uchun 6u va 3u ni birlashtirish.
9u-u^{2}=-4+18
18 ni ikki tarafga qo’shing.
9u-u^{2}=14
14 olish uchun -4 va 18'ni qo'shing.
-u^{2}+9u=14
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-u^{2}+9u}{-1}=\frac{14}{-1}
Ikki tarafini -1 ga bo‘ling.
u^{2}+\frac{9}{-1}u=\frac{14}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
u^{2}-9u=\frac{14}{-1}
9 ni -1 ga bo'lish.
u^{2}-9u=-14
14 ni -1 ga bo'lish.
u^{2}-9u+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
u^{2}-9u+\frac{81}{4}=-14+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
u^{2}-9u+\frac{81}{4}=\frac{25}{4}
-14 ni \frac{81}{4} ga qo'shish.
\left(u-\frac{9}{2}\right)^{2}=\frac{25}{4}
u^{2}-9u+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(u-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
u-\frac{9}{2}=\frac{5}{2} u-\frac{9}{2}=-\frac{5}{2}
Qisqartirish.
u=7 u=2
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}