u uchun yechish
u=-4
Baham ko'rish
Klipbordga nusxa olish
\left(u+9\right)\left(u+10\right)=\left(u+1\right)\left(u-6\right)
u qiymati -9,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(u+1\right)\left(u+9\right) ga, u+1,u+9 ning eng kichik karralisiga ko‘paytiring.
u^{2}+19u+90=\left(u+1\right)\left(u-6\right)
u+9 ga u+10 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}+19u+90=u^{2}-5u-6
u+1 ga u-6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
u^{2}+19u+90-u^{2}=-5u-6
Ikkala tarafdan u^{2} ni ayirish.
19u+90=-5u-6
0 ni olish uchun u^{2} va -u^{2} ni birlashtirish.
19u+90+5u=-6
5u ni ikki tarafga qo’shing.
24u+90=-6
24u ni olish uchun 19u va 5u ni birlashtirish.
24u=-6-90
Ikkala tarafdan 90 ni ayirish.
24u=-96
-96 olish uchun -6 dan 90 ni ayirish.
u=\frac{-96}{24}
Ikki tarafini 24 ga bo‘ling.
u=-4
-4 ni olish uchun -96 ni 24 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}