t uchun yechish
t=4
Baham ko'rish
Klipbordga nusxa olish
-\left(t^{2}-3\right)+\left(t+1\right)\left(t+1\right)=\left(t-1\right)\times 4
t qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(t-1\right)\left(t+1\right) ga, 1-t^{2},t-1,1+t ning eng kichik karralisiga ko‘paytiring.
-\left(t^{2}-3\right)+\left(t+1\right)^{2}=\left(t-1\right)\times 4
\left(t+1\right)^{2} hosil qilish uchun t+1 va t+1 ni ko'paytirish.
-t^{2}+3+\left(t+1\right)^{2}=\left(t-1\right)\times 4
t^{2}-3 teskarisini topish uchun har birining teskarisini toping.
-t^{2}+3+t^{2}+2t+1=\left(t-1\right)\times 4
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(t+1\right)^{2} kengaytirilishi uchun ishlating.
3+2t+1=\left(t-1\right)\times 4
0 ni olish uchun -t^{2} va t^{2} ni birlashtirish.
4+2t=\left(t-1\right)\times 4
4 olish uchun 3 va 1'ni qo'shing.
4+2t=4t-4
t-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4+2t-4t=-4
Ikkala tarafdan 4t ni ayirish.
4-2t=-4
-2t ni olish uchun 2t va -4t ni birlashtirish.
-2t=-4-4
Ikkala tarafdan 4 ni ayirish.
-2t=-8
-8 olish uchun -4 dan 4 ni ayirish.
t=\frac{-8}{-2}
Ikki tarafini -2 ga bo‘ling.
t=4
4 ni olish uchun -8 ni -2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}