s uchun yechish
s=2
Baham ko'rish
Klipbordga nusxa olish
\left(s+5\right)\left(s-7\right)=\left(s+3\right)\left(s-9\right)
s qiymati -5,-3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(s+3\right)\left(s+5\right) ga, s+3,s+5 ning eng kichik karralisiga ko‘paytiring.
s^{2}-2s-35=\left(s+3\right)\left(s-9\right)
s+5 ga s-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
s^{2}-2s-35=s^{2}-6s-27
s+3 ga s-9 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
s^{2}-2s-35-s^{2}=-6s-27
Ikkala tarafdan s^{2} ni ayirish.
-2s-35=-6s-27
0 ni olish uchun s^{2} va -s^{2} ni birlashtirish.
-2s-35+6s=-27
6s ni ikki tarafga qo’shing.
4s-35=-27
4s ni olish uchun -2s va 6s ni birlashtirish.
4s=-27+35
35 ni ikki tarafga qo’shing.
4s=8
8 olish uchun -27 va 35'ni qo'shing.
s=\frac{8}{4}
Ikki tarafini 4 ga bo‘ling.
s=2
2 ni olish uchun 8 ni 4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}