c uchun yechish
c=\frac{r\left(2-d\right)}{y}
y\neq 0
d uchun yechish
\left\{\begin{matrix}d=-\frac{cy}{r}+2\text{, }&r\neq 0\text{ and }y\neq 0\\d\in \mathrm{R}\text{, }&c=0\text{ and }r=0\text{ and }y\neq 0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
r\left(2-d\right)=cy
Tenglamaning ikkala tarafini y ga ko'paytirish.
2r-rd=cy
r ga 2-d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
cy=2r-rd
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
yc=2r-dr
Tenglama standart shaklda.
\frac{yc}{y}=\frac{r\left(2-d\right)}{y}
Ikki tarafini y ga bo‘ling.
c=\frac{r\left(2-d\right)}{y}
y ga bo'lish y ga ko'paytirishni bekor qiladi.
r\left(2-d\right)=cy
Tenglamaning ikkala tarafini y ga ko'paytirish.
2r-rd=cy
r ga 2-d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-rd=cy-2r
Ikkala tarafdan 2r ni ayirish.
\left(-r\right)d=cy-2r
Tenglama standart shaklda.
\frac{\left(-r\right)d}{-r}=\frac{cy-2r}{-r}
Ikki tarafini -r ga bo‘ling.
d=\frac{cy-2r}{-r}
-r ga bo'lish -r ga ko'paytirishni bekor qiladi.
d=-\frac{cy}{r}+2
cy-2r ni -r ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}