p uchun yechish
p=-\frac{3}{5}=-0,6
Baham ko'rish
Klipbordga nusxa olish
\frac{\frac{1}{5}\left(5p-2\right)}{\frac{1}{5}\left(5p+2\right)}=5
\frac{p-\frac{2}{5}}{p+\frac{2}{5}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{5p-2}{\left(\frac{1}{5}\right)^{0}\left(5p+2\right)}=5
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun suratning darajasini maxraj darajasiga bo‘ling.
\frac{5p-2}{1\left(5p+2\right)}=5
0 daraja ko‘rsatkichini \frac{1}{5} ga hisoblang va 1 ni qiymatni oling.
\frac{5p-2}{5p+2}=5
1 ga 5p+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5p-2=5\left(5p+2\right)
p qiymati -\frac{2}{5} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5p+2 ga ko'paytirish.
5p-2=25p+10
5 ga 5p+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
5p-2-25p=10
Ikkala tarafdan 25p ni ayirish.
-20p-2=10
-20p ni olish uchun 5p va -25p ni birlashtirish.
-20p=10+2
2 ni ikki tarafga qo’shing.
-20p=12
12 olish uchun 10 va 2'ni qo'shing.
p=\frac{12}{-20}
Ikki tarafini -20 ga bo‘ling.
p=-\frac{3}{5}
\frac{12}{-20} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}