Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. n ni \frac{n-m}{n-m} marotabaga ko'paytirish.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
\frac{n\left(n-m\right)}{n-m} va \frac{n^{2}}{n-m} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n\left(n-m\right)-n^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n^{2}-nm-n^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Faktor: n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} marotabaga ko'paytirish.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} va \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\left(m+n\right)\left(-m+n\right)+m^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
-m^{2}+mn-nm+n^{2}+m^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{-nm}{n-m} ni \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ga bo'lish \frac{-nm}{n-m} ga k'paytirish \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ga qaytarish.
\frac{-m\left(m+n\right)}{n}
Surat va maxrajdagi ikkala n\left(-m+n\right) ni qisqartiring.
\frac{-m^{2}-mn}{n}
-m ga m+n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{n\left(n-m\right)}{n-m}-\frac{n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. n ni \frac{n-m}{n-m} marotabaga ko'paytirish.
\frac{\frac{n\left(n-m\right)-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
\frac{n\left(n-m\right)}{n-m} va \frac{n^{2}}{n-m} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{n^{2}-nm-n^{2}}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n\left(n-m\right)-n^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{n^{2}-m^{2}}}
n^{2}-nm-n^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{-nm}{n-m}}{1+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Faktor: n^{2}-m^{2}.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)}+\frac{m^{2}}{\left(m+n\right)\left(-m+n\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} marotabaga ko'paytirish.
\frac{\frac{-nm}{n-m}}{\frac{\left(m+n\right)\left(-m+n\right)+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\frac{\left(m+n\right)\left(-m+n\right)}{\left(m+n\right)\left(-m+n\right)} va \frac{m^{2}}{\left(m+n\right)\left(-m+n\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{-nm}{n-m}}{\frac{-m^{2}+mn-nm+n^{2}+m^{2}}{\left(m+n\right)\left(-m+n\right)}}
\left(m+n\right)\left(-m+n\right)+m^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{-nm}{n-m}}{\frac{n^{2}}{\left(m+n\right)\left(-m+n\right)}}
-m^{2}+mn-nm+n^{2}+m^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{-nm\left(m+n\right)\left(-m+n\right)}{\left(n-m\right)n^{2}}
\frac{-nm}{n-m} ni \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ga bo'lish \frac{-nm}{n-m} ga k'paytirish \frac{n^{2}}{\left(m+n\right)\left(-m+n\right)} ga qaytarish.
\frac{-m\left(m+n\right)}{n}
Surat va maxrajdagi ikkala n\left(-m+n\right) ni qisqartiring.
\frac{-m^{2}-mn}{n}
-m ga m+n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.