n uchun yechish
n=-4
n=3
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { n } { n - 4 } + n = \frac { 12 - 4 n } { n - 4 }
Baham ko'rish
Klipbordga nusxa olish
n+\left(n-4\right)n=12-4n
n qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini n-4 ga ko'paytirish.
n+n^{2}-4n=12-4n
n-4 ga n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3n+n^{2}=12-4n
-3n ni olish uchun n va -4n ni birlashtirish.
-3n+n^{2}-12=-4n
Ikkala tarafdan 12 ni ayirish.
-3n+n^{2}-12+4n=0
4n ni ikki tarafga qo’shing.
n+n^{2}-12=0
n ni olish uchun -3n va 4n ni birlashtirish.
n^{2}+n-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -12 ni c bilan almashtiring.
n=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
1 kvadratini chiqarish.
n=\frac{-1±\sqrt{1+48}}{2}
-4 ni -12 marotabaga ko'paytirish.
n=\frac{-1±\sqrt{49}}{2}
1 ni 48 ga qo'shish.
n=\frac{-1±7}{2}
49 ning kvadrat ildizini chiqarish.
n=\frac{6}{2}
n=\frac{-1±7}{2} tenglamasini yeching, bunda ± musbat. -1 ni 7 ga qo'shish.
n=3
6 ni 2 ga bo'lish.
n=-\frac{8}{2}
n=\frac{-1±7}{2} tenglamasini yeching, bunda ± manfiy. -1 dan 7 ni ayirish.
n=-4
-8 ni 2 ga bo'lish.
n=3 n=-4
Tenglama yechildi.
n+\left(n-4\right)n=12-4n
n qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini n-4 ga ko'paytirish.
n+n^{2}-4n=12-4n
n-4 ga n ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-3n+n^{2}=12-4n
-3n ni olish uchun n va -4n ni birlashtirish.
-3n+n^{2}+4n=12
4n ni ikki tarafga qo’shing.
n+n^{2}=12
n ni olish uchun -3n va 4n ni birlashtirish.
n^{2}+n=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+n+\frac{1}{4}=12+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
n^{2}+n+\frac{1}{4}=\frac{49}{4}
12 ni \frac{1}{4} ga qo'shish.
\left(n+\frac{1}{2}\right)^{2}=\frac{49}{4}
n^{2}+n+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{1}{2}=\frac{7}{2} n+\frac{1}{2}=-\frac{7}{2}
Qisqartirish.
n=3 n=-4
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}