n uchun yechish
n=\frac{62937}{4\left(1000-x\right)}
x\neq 1000
x uchun yechish
x=1000-\frac{62937}{4n}
n\neq 0
Grafik
Viktorina
Linear Equation
5xshash muammolar:
\frac { n } { 9 } \times + \frac { 4 } { 7 } ( 1000 - x ) = 999
Baham ko'rish
Klipbordga nusxa olish
7n\times \frac{4}{7}\left(1000-x\right)=62937
Tenglamaning ikkala tarafini 63 ga, 9,7 ning eng kichik karralisiga ko‘paytiring.
4n\left(1000-x\right)=62937
4 hosil qilish uchun 7 va \frac{4}{7} ni ko'paytirish.
4000n-4nx=62937
4n ga 1000-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(4000-4x\right)n=62937
n'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(4000-4x\right)n}{4000-4x}=\frac{62937}{4000-4x}
Ikki tarafini -4x+4000 ga bo‘ling.
n=\frac{62937}{4000-4x}
-4x+4000 ga bo'lish -4x+4000 ga ko'paytirishni bekor qiladi.
n=\frac{62937}{4\left(1000-x\right)}
62937 ni -4x+4000 ga bo'lish.
7n\times \frac{4}{7}\left(1000-x\right)=62937
Tenglamaning ikkala tarafini 63 ga, 9,7 ning eng kichik karralisiga ko‘paytiring.
4n\left(1000-x\right)=62937
4 hosil qilish uchun 7 va \frac{4}{7} ni ko'paytirish.
4000n-4xn=62937
4n ga 1000-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-4xn=62937-4000n
Ikkala tarafdan 4000n ni ayirish.
\left(-4n\right)x=62937-4000n
Tenglama standart shaklda.
\frac{\left(-4n\right)x}{-4n}=\frac{62937-4000n}{-4n}
Ikki tarafini -4n ga bo‘ling.
x=\frac{62937-4000n}{-4n}
-4n ga bo'lish -4n ga ko'paytirishni bekor qiladi.
x=1000-\frac{62937}{4n}
62937-4000n ni -4n ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}