Baholash
\frac{29}{6}\approx 4,833333333
Omil
\frac{29}{2 \cdot 3} = 4\frac{5}{6} = 4,833333333333333
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{3}-\frac{3n}{n}\times \frac{3n}{n-3n}
Surat va maxrajdagi ikkala n ni qisqartiring.
\frac{1}{3}-3\times \frac{3n}{n-3n}
Surat va maxrajdagi ikkala n ni qisqartiring.
\frac{1}{3}-3\times \frac{3n}{-2n}
-2n ni olish uchun n va -3n ni birlashtirish.
\frac{1}{3}-3\times \frac{3}{-2}
Surat va maxrajdagi ikkala n ni qisqartiring.
\frac{1}{3}-3\left(-\frac{3}{2}\right)
\frac{3}{-2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
\frac{1}{3}-\frac{3\left(-3\right)}{2}
3\left(-\frac{3}{2}\right) ni yagona kasrga aylantiring.
\frac{1}{3}-\frac{-9}{2}
-9 hosil qilish uchun 3 va -3 ni ko'paytirish.
\frac{1}{3}-\left(-\frac{9}{2}\right)
\frac{-9}{2} kasri manfiy belgini olib tashlash bilan -\frac{9}{2} sifatida qayta yozilishi mumkin.
\frac{1}{3}+\frac{9}{2}
-\frac{9}{2} ning teskarisi \frac{9}{2} ga teng.
\frac{2}{6}+\frac{27}{6}
3 va 2 ning eng kichik umumiy karralisi 6 ga teng. \frac{1}{3} va \frac{9}{2} ni 6 maxraj bilan kasrlarga aylantirib oling.
\frac{2+27}{6}
\frac{2}{6} va \frac{27}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{29}{6}
29 olish uchun 2 va 27'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}