Baholash
\frac{1}{n^{16}}
n ga nisbatan hosilani topish
-\frac{16}{n^{17}}
Baham ko'rish
Klipbordga nusxa olish
\frac{n^{8}}{n^{24}}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 6 va 4 ni ko‘paytirib, 24 ni oling.
\frac{1}{n^{16}}
n^{24} ni n^{8}n^{16} sifatida qaytadan yozish. Surat va maxrajdagi ikkala n^{8} ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{8}}{n^{24}})
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 6 va 4 ni ko‘paytirib, 24 ni oling.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{n^{16}})
n^{24} ni n^{8}n^{16} sifatida qaytadan yozish. Surat va maxrajdagi ikkala n^{8} ni qisqartiring.
-\left(n^{16}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}n}(n^{16})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(n^{16}\right)^{-2}\times 16n^{16-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-16n^{15}\left(n^{16}\right)^{-2}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}