m uchun yechish
m=0
Viktorina
Linear Equation
5xshash muammolar:
\frac { m - 1 } { m + 1 } - \frac { 2 m } { m - 1 } = - 1
Baham ko'rish
Klipbordga nusxa olish
\left(m-1\right)\left(m-1\right)-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
m qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(m-1\right)\left(m+1\right) ga, m+1,m-1 ning eng kichik karralisiga ko‘paytiring.
\left(m-1\right)^{2}-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
\left(m-1\right)^{2} hosil qilish uchun m-1 va m-1 ni ko'paytirish.
m^{2}-2m+1-\left(m+1\right)\times 2m=-\left(m-1\right)\left(m+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(m-1\right)^{2} kengaytirilishi uchun ishlating.
m^{2}-2m+1-\left(2m+2\right)m=-\left(m-1\right)\left(m+1\right)
m+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
m^{2}-2m+1-\left(2m^{2}+2m\right)=-\left(m-1\right)\left(m+1\right)
2m+2 ga m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
m^{2}-2m+1-2m^{2}-2m=-\left(m-1\right)\left(m+1\right)
2m^{2}+2m teskarisini topish uchun har birining teskarisini toping.
-m^{2}-2m+1-2m=-\left(m-1\right)\left(m+1\right)
-m^{2} ni olish uchun m^{2} va -2m^{2} ni birlashtirish.
-m^{2}-4m+1=-\left(m-1\right)\left(m+1\right)
-4m ni olish uchun -2m va -2m ni birlashtirish.
-m^{2}-4m+1=\left(-m+1\right)\left(m+1\right)
-1 ga m-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-m^{2}-4m+1=-m^{2}+1
-m+1 ga m+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-m^{2}-4m+1+m^{2}=1
m^{2} ni ikki tarafga qo’shing.
-4m+1=1
0 ni olish uchun -m^{2} va m^{2} ni birlashtirish.
-4m=1-1
Ikkala tarafdan 1 ni ayirish.
-4m=0
0 olish uchun 1 dan 1 ni ayirish.
m=0
Ikki son koʻpaytmasi 0 ga teng, agar kamida bittasi 0 bo‘lsa. -4 0 ga teng bo‘lmasa, m 0 ga teng bo‘lishi kerak.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}