m uchun yechish
m=9
Baham ko'rish
Klipbordga nusxa olish
\left(m+1\right)m=\left(m+9\right)\left(m-4\right)
m qiymati -9,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(m+1\right)\left(m+9\right) ga, m+9,m+1 ning eng kichik karralisiga ko‘paytiring.
m^{2}+m=\left(m+9\right)\left(m-4\right)
m+1 ga m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
m^{2}+m=m^{2}+5m-36
m+9 ga m-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
m^{2}+m-m^{2}=5m-36
Ikkala tarafdan m^{2} ni ayirish.
m=5m-36
0 ni olish uchun m^{2} va -m^{2} ni birlashtirish.
m-5m=-36
Ikkala tarafdan 5m ni ayirish.
-4m=-36
-4m ni olish uchun m va -5m ni birlashtirish.
m=\frac{-36}{-4}
Ikki tarafini -4 ga bo‘ling.
m=9
9 ni olish uchun -36 ni -4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}