Baholash
\frac{m^{2}-n^{2}}{100n^{3}m^{4}}
Kengaytirish
-\frac{n^{2}-m^{2}}{100n^{3}m^{4}}
Viktorina
Algebra
\frac { m + n } { 2 m } \frac { m - n } { 5 m ^ { 3 } n } \frac { 1 } { 10 n ^ { 2 } } =
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{m+n}{2m} ni \frac{m-n}{5m^{3}n} ga ko‘paytiring.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ni \frac{1}{10n^{2}} ga ko‘paytiring.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 3 ni qo‘shib, 4 ni oling.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
100 hosil qilish uchun 10 va 10 ni ko'paytirish.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Hisoblang: \left(m+n\right)\left(m-n\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n}\times \frac{1}{10n^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{m+n}{2m} ni \frac{m-n}{5m^{3}n} ga ko‘paytiring.
\frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n\times 10n^{2}}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{\left(m+n\right)\left(m-n\right)}{2m\times 5m^{3}n} ni \frac{1}{10n^{2}} ga ko‘paytiring.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n\times 10n^{2}}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 3 ni qo‘shib, 4 ni oling.
\frac{\left(m+n\right)\left(m-n\right)}{2m^{4}\times 5n^{3}\times 10}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
\frac{\left(m+n\right)\left(m-n\right)}{10m^{4}n^{3}\times 10}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
\frac{\left(m+n\right)\left(m-n\right)}{100m^{4}n^{3}}
100 hosil qilish uchun 10 va 10 ni ko'paytirish.
\frac{m^{2}-n^{2}}{100m^{4}n^{3}}
Hisoblang: \left(m+n\right)\left(m-n\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}